PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o48.
Published online 2008 December 10. doi:  10.1107/S1600536808040361
PMCID: PMC2967963

3-Benzamidomethyl-4-[(E)-2-chloro­benzyl­ideneamino]-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C17H14ClN5OS, the dihedral angles formed by the two benzene rings with the triazole ring are 66.88 (3) and 19.16 (3)°, and the benzene rings are inclined to each other with a dihedral angle of 78.40 (3)°. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into layers parallel to the (100) planes, and centrosymmetric π–π stacking inter­actions [centroid–centroid distance = 3.7717 (5) Å] are formed between benzene rings in neighbouring layers.

Related literature

For pharmaceutical and other applications of triazole compounds, see: Almasirad et al. (2004 [triangle]); Al-Soud et al. (2003 [triangle]); Amir & Shikha (2004 [triangle]); Kalluraya et al. (1996 [triangle]); Kawashima et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o48-scheme1.jpg

Experimental

Crystal data

  • C17H14ClN5OS
  • M r = 371.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o48-efi1.jpg
  • a = 17.0185 (6) Å
  • b = 8.0905 (3) Å
  • c = 12.8292 (5) Å
  • β = 105.962 (2)°
  • V = 1698.32 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 100.0 (1) K
  • 0.70 × 0.48 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.785, T max = 0.949
  • 57891 measured reflections
  • 7463 independent reflections
  • 6349 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.098
  • S = 1.09
  • 7463 reflections
  • 234 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040361/bi2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040361/bi2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

H-KF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

1,2,4-Triazoles and their derivatives represent a rapidly developing field in modern heterocyclic chemistry, in part due to their antibacterial, antifungal, antitubercular, anticancer (Kalluraya et al., 1996), antitumor (Al-Soud et al., 2003), anticonvulsant (Almasirad et al., 2004), anti-inflammatory, and analgesic properties (Amir & Shikha, 2004). Certain 1,2,4-triazoles also find applications in the preparation of photographic plates, polymers, and as analytical agents (Kawashima et al., 1986). In continuation of our interest in the synthesis of chemically and biologically important heterocycles, we report here a substituted 1,2,4-triazole Schiff base.

In the title compound (Fig. 1), the dihedral angles formed by the triazole (N2/N3/C10/N4/C9) ring with the two benzene rings (C1–C6; C12–C17) are 66.88 (3)° and 19.16 (3)° respectively. The benzene rings (C1–C6; C12–C17) form a dihedral angle of 78.40 (3)°, indicating that they are inclined to each other. The structure contains intermolecular N—H···O hydrogen bonds (see Table), linking the molecules into two-dimensional networks parallel to the (100) planes (Fig. 2). Between layers, π—π stacking interactions are formed between inversion-related benzene rings (C12–C17 and its symmetry equivalent 2-x, 2-y, 1-z) with centroid-centroid distance 3.7717 (5) Å.

Experimental

The title compound was obtained by refluxing N-[(4-amino-5-sulfanyl-4H-1, 2,4-triazol-3-yl)methyl]benzamide (0.01 mol) and 2-chlorobenzaldehyde (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated sulfuric acid for 5 h. The solid product obtained was collected by filtration, washed with ethanol and dried. The product was then recrystallized using ethanol.

Refinement

The amino H atoms were located in a difference map and refined with restraints of N—H = 0.85 (1) Å. The remaining H atoms were positioned geometrically [C—H = 0.93Å (aromatic) or 0.97Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Projection down the a axis onto one two-dimensional hydrogen-bond network.

Crystal data

C17H14ClN5OSF(000) = 768
Mr = 371.84Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9004 reflections
a = 17.0185 (6) Åθ = 2.6–26.3°
b = 8.0905 (3) ŵ = 0.36 mm1
c = 12.8292 (5) ÅT = 100 K
β = 105.962 (2)°Plate, colourless
V = 1698.32 (11) Å30.70 × 0.48 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer7463 independent reflections
Radiation source: fine-focus sealed tube6349 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 35.0°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −27→27
Tmin = 0.785, Tmax = 0.949k = −12→13
57891 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4785P] where P = (Fo2 + 2Fc2)/3
7463 reflections(Δ/σ)max = 0.004
234 parametersΔρmax = 0.59 e Å3
2 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.007210 (13)1.03657 (3)0.261198 (17)0.02066 (5)
S10.757666 (14)1.12198 (3)0.021681 (19)0.02205 (6)
O10.52774 (4)1.20878 (8)0.36983 (5)0.01823 (12)
N10.52114 (5)0.94734 (9)0.30979 (6)0.01683 (13)
N20.56478 (5)1.09220 (10)0.13014 (6)0.01817 (13)
N30.60840 (5)1.13484 (10)0.05794 (6)0.01859 (14)
N40.69550 (4)1.02508 (9)0.19194 (6)0.01486 (12)
N50.75857 (4)0.95136 (10)0.26923 (6)0.01636 (13)
C10.37543 (6)1.16562 (13)0.41825 (8)0.02102 (16)
H1A0.41291.23330.46590.025*
C20.29456 (7)1.16030 (15)0.42187 (9)0.0288 (2)
H2A0.27791.22320.47260.035*
C30.23860 (7)1.06069 (16)0.34943 (11)0.0332 (3)
H3A0.18461.05690.35220.040*
C40.26273 (6)0.96688 (15)0.27305 (10)0.0308 (2)
H4A0.22470.90190.22410.037*
C50.34392 (6)0.96984 (12)0.26950 (8)0.02199 (17)
H5A0.36030.90640.21880.026*
C60.40030 (5)1.06870 (11)0.34268 (7)0.01574 (14)
C70.48744 (5)1.07999 (10)0.34185 (6)0.01337 (13)
C80.60617 (5)0.94817 (11)0.30987 (7)0.01689 (14)
H8A0.62630.83540.31620.020*
H8B0.63761.00900.37270.020*
C90.61919 (5)1.02410 (10)0.20985 (7)0.01548 (14)
C100.68828 (5)1.09511 (11)0.09059 (7)0.01650 (14)
C110.83182 (5)0.96240 (11)0.26128 (7)0.01659 (14)
H11A0.84361.02040.20480.020*
C120.89642 (5)0.87989 (10)0.34477 (6)0.01453 (13)
C130.97907 (5)0.90723 (10)0.35310 (6)0.01472 (13)
C141.04079 (5)0.83357 (11)0.43414 (7)0.01758 (15)
H14A1.09540.85400.43870.021*
C151.01981 (6)0.72926 (11)0.50811 (7)0.01963 (16)
H15A1.06060.68040.56300.024*
C160.93781 (6)0.69731 (12)0.50042 (7)0.02018 (16)
H16A0.92400.62640.54970.024*
C170.87707 (5)0.77125 (11)0.41949 (7)0.01766 (14)
H17A0.82260.74870.41450.021*
H1N30.5848 (9)1.1788 (19)−0.0026 (9)0.034 (4)*
H1N10.4932 (9)0.8627 (15)0.2855 (13)0.040 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01679 (9)0.02638 (11)0.01858 (9)−0.00361 (7)0.00446 (7)0.00349 (7)
S10.01723 (10)0.03144 (12)0.01831 (10)0.00069 (8)0.00629 (7)0.00525 (8)
O10.0181 (3)0.0162 (3)0.0190 (3)−0.0035 (2)0.0027 (2)−0.0028 (2)
N10.0142 (3)0.0155 (3)0.0217 (3)−0.0019 (2)0.0065 (2)−0.0035 (2)
N20.0139 (3)0.0220 (3)0.0183 (3)0.0027 (3)0.0040 (2)0.0024 (3)
N30.0147 (3)0.0234 (3)0.0168 (3)0.0032 (3)0.0030 (2)0.0044 (3)
N40.0115 (3)0.0184 (3)0.0143 (3)0.0024 (2)0.0029 (2)0.0018 (2)
N50.0130 (3)0.0202 (3)0.0147 (3)0.0035 (2)0.0020 (2)0.0013 (2)
C10.0211 (4)0.0247 (4)0.0198 (4)0.0061 (3)0.0098 (3)0.0049 (3)
C20.0242 (5)0.0374 (5)0.0302 (5)0.0127 (4)0.0163 (4)0.0145 (4)
C30.0160 (4)0.0428 (6)0.0430 (6)0.0060 (4)0.0117 (4)0.0218 (5)
C40.0146 (4)0.0349 (6)0.0396 (6)−0.0037 (4)0.0015 (4)0.0115 (4)
C50.0158 (4)0.0223 (4)0.0255 (4)−0.0022 (3)0.0017 (3)0.0029 (3)
C60.0135 (3)0.0171 (3)0.0170 (3)0.0011 (3)0.0049 (3)0.0037 (3)
C70.0137 (3)0.0147 (3)0.0115 (3)−0.0003 (2)0.0032 (2)0.0006 (2)
C80.0138 (3)0.0203 (4)0.0173 (3)0.0020 (3)0.0055 (3)0.0012 (3)
C90.0125 (3)0.0175 (3)0.0165 (3)0.0018 (3)0.0040 (3)0.0000 (3)
C100.0148 (3)0.0184 (3)0.0155 (3)0.0009 (3)0.0029 (3)0.0014 (3)
C110.0134 (3)0.0196 (4)0.0160 (3)0.0014 (3)0.0028 (3)0.0018 (3)
C120.0126 (3)0.0161 (3)0.0143 (3)0.0014 (2)0.0027 (2)−0.0004 (2)
C130.0135 (3)0.0161 (3)0.0143 (3)0.0009 (3)0.0032 (2)−0.0006 (2)
C140.0135 (3)0.0193 (4)0.0180 (3)0.0028 (3)0.0011 (3)−0.0015 (3)
C150.0192 (4)0.0188 (4)0.0184 (3)0.0046 (3)0.0008 (3)0.0018 (3)
C160.0218 (4)0.0196 (4)0.0187 (4)0.0020 (3)0.0048 (3)0.0038 (3)
C170.0160 (3)0.0196 (4)0.0177 (3)0.0008 (3)0.0051 (3)0.0016 (3)

Geometric parameters (Å, °)

Cl1—C131.7393 (9)C4—C51.3951 (14)
S1—C101.6726 (9)C4—H4A0.930
O1—C71.2449 (10)C5—C61.3951 (13)
N1—C71.3340 (11)C5—H5A0.930
N1—C81.4468 (11)C6—C71.4887 (11)
N1—H1N10.84 (1)C8—C91.4930 (12)
N2—C91.2984 (11)C8—H8A0.970
N2—N31.3807 (11)C8—H8B0.970
N3—C101.3467 (11)C11—C121.4677 (12)
N3—H1N30.85 (1)C11—H11A0.930
N4—C91.3797 (11)C12—C131.3987 (11)
N4—N51.3804 (10)C12—C171.4047 (12)
N4—C101.3924 (11)C13—C141.3924 (12)
N5—C111.2816 (11)C14—C151.3879 (13)
C1—C21.3905 (14)C14—H14A0.930
C1—C61.3999 (13)C15—C161.3958 (13)
C1—H1A0.930C15—H15A0.930
C2—C31.3904 (19)C16—C171.3836 (12)
C2—H2A0.930C16—H16A0.930
C3—C41.3879 (19)C17—H17A0.930
C3—H3A0.930
C7—N1—C8120.72 (7)N1—C8—H8A109.0
C7—N1—H1N1121.3 (12)C9—C8—H8A109.0
C8—N1—H1N1117.8 (12)N1—C8—H8B109.0
C9—N2—N3103.64 (7)C9—C8—H8B109.0
C10—N3—N2114.49 (7)H8A—C8—H8B107.8
C10—N3—H1N3124.6 (11)N2—C9—N4111.50 (7)
N2—N3—H1N3120.8 (11)N2—C9—C8127.53 (8)
C9—N4—N5117.35 (7)N4—C9—C8120.96 (7)
C9—N4—C10108.21 (7)N3—C10—N4102.12 (7)
N5—N4—C10134.27 (7)N3—C10—S1127.13 (7)
C11—N5—N4119.60 (7)N4—C10—S1130.74 (7)
C2—C1—C6119.76 (10)N5—C11—C12117.39 (8)
C2—C1—H1A120.1N5—C11—H11A121.3
C6—C1—H1A120.1C12—C11—H11A121.3
C3—C2—C1119.87 (10)C13—C12—C17117.80 (7)
C3—C2—H2A120.1C13—C12—C11121.30 (7)
C1—C2—H2A120.1C17—C12—C11120.90 (8)
C4—C3—C2120.50 (10)C14—C13—C12121.71 (8)
C4—C3—H3A119.7C14—C13—Cl1118.16 (6)
C2—C3—H3A119.7C12—C13—Cl1120.13 (6)
C3—C4—C5120.11 (11)C15—C14—C13119.19 (8)
C3—C4—H4A119.9C15—C14—H14A120.4
C5—C4—H4A119.9C13—C14—H14A120.4
C6—C5—C4119.47 (10)C14—C15—C16120.29 (8)
C6—C5—H5A120.3C14—C15—H15A119.9
C4—C5—H5A120.3C16—C15—H15A119.9
C5—C6—C1120.28 (8)C17—C16—C15119.94 (8)
C5—C6—C7122.17 (8)C17—C16—H16A120.0
C1—C6—C7117.52 (8)C15—C16—H16A120.0
O1—C7—N1120.84 (8)C16—C17—C12121.04 (8)
O1—C7—C6121.35 (8)C16—C17—H17A119.5
N1—C7—C6117.81 (7)C12—C17—H17A119.5
N1—C8—C9112.71 (7)
C9—N2—N3—C100.01 (11)C10—N4—C9—C8176.80 (8)
C9—N4—N5—C11−173.61 (8)N1—C8—C9—N23.33 (13)
C10—N4—N5—C1111.79 (14)N1—C8—C9—N4−175.30 (7)
C6—C1—C2—C3−0.94 (15)N2—N3—C10—N4−1.18 (10)
C1—C2—C3—C4−0.30 (16)N2—N3—C10—S1177.48 (7)
C2—C3—C4—C51.02 (16)C9—N4—C10—N31.84 (9)
C3—C4—C5—C6−0.50 (15)N5—N4—C10—N3176.80 (9)
C4—C5—C6—C1−0.73 (14)C9—N4—C10—S1−176.74 (7)
C4—C5—C6—C7−178.80 (8)N5—N4—C10—S1−1.79 (15)
C2—C1—C6—C51.45 (13)N4—N5—C11—C12−179.19 (7)
C2—C1—C6—C7179.61 (8)N5—C11—C12—C13−169.43 (8)
C8—N1—C7—O11.88 (12)N5—C11—C12—C1710.21 (12)
C8—N1—C7—C6−178.27 (7)C17—C12—C13—C14−1.71 (12)
C5—C6—C7—O1148.96 (9)C11—C12—C13—C14177.95 (8)
C1—C6—C7—O1−29.16 (12)C17—C12—C13—Cl1178.51 (6)
C5—C6—C7—N1−30.88 (12)C11—C12—C13—Cl1−1.83 (11)
C1—C6—C7—N1151.00 (8)C12—C13—C14—C150.51 (13)
C7—N1—C8—C9−83.83 (10)Cl1—C13—C14—C15−179.70 (7)
N3—N2—C9—N41.23 (10)C13—C14—C15—C160.73 (13)
N3—N2—C9—C8−177.50 (8)C14—C15—C16—C17−0.71 (14)
N5—N4—C9—N2−177.97 (7)C15—C16—C17—C12−0.54 (14)
C10—N4—C9—N2−2.04 (10)C13—C12—C17—C161.72 (13)
N5—N4—C9—C80.86 (12)C11—C12—C17—C16−177.94 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1N3···O1i0.85 (1)1.89 (1)2.7362 (10)175 (1)
N1—H1N1···O1ii0.84 (1)2.29 (1)2.9450 (10)134 (2)

Symmetry codes: (i) x, −y+5/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2320).

References

  • Almasirad, A., Tabatabai, S. A., Faizi, M., Kebriaeezadeh, A., Mehrabi, N., Dalvandi, A. & Shafiee, A. (2004). Bioorg. Med. Chem. Lett.14, 6057–6059. [PubMed]
  • Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. R. S. (2003). Bioorg. Med. Chem.11, 1701–1708. [PubMed]
  • Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem.39, 535–545. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kalluraya, B., Shetty, S. N., Gunaga, P. & Holla, B. S. (1996). Boll. Chim. Farm.135, 638–642. [PubMed]
  • Kawashima, Y., Ishikawa, H., Kida, S., Tanaka, T. & Masuda, T. (1987). Chem. Abstr.106, 138475x.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography