PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o46.
Published online 2008 December 10. doi:  10.1107/S1600536808040981
PMCID: PMC2967961

3-Hydr­oxy-4-nitro­phenyl acetate

Abstract

In the mol­ecule of the title compound, C8H7NO5, the acetate group is oriented with respect to the aromatic ring at a dihedral angle of 85.30 (3)°. An intra­molecular O—H(...)O hydrogen bond results in the formation of a non-planar six-membered ring, adopting an envelope conformation. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For general background to phenolic esters as inter­mediates in organic synthesis, see: Trollsås et al. (1996 [triangle]); Svensson et al. (1998 [triangle]); Atkinson et al. (2005 [triangle]); Hu et al. (2001 [triangle]). For a related structure, see: Ji et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o46-scheme1.jpg

Experimental

Crystal data

  • C8H7NO5
  • M r = 197.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o46-efi1.jpg
  • a = 10.881 (2) Å
  • b = 5.0543 (10) Å
  • c = 15.318 (3) Å
  • β = 93.75 (3)°
  • V = 840.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 153 (2) K
  • 0.24 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.969, T max = 0.979
  • 5058 measured reflections
  • 1449 independent reflections
  • 1232 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.083
  • S = 1.12
  • 1449 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040981/hk2582sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040981/hk2582Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Phenolic esters are useful intermediates in organic synthesis (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001). We have developed a new method for the syntheses of some phenolic esters (Ji et al., 2006). The title compound is one of the products, and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. The acetate group is oriented with respect to the aromatic ring at a dihedral angle of 85.30 (3)°. The intramolecular O-H···O hydrogen bond (Table 1) results in the formation of a nonplanar six-membered ring (N1/O3/O4/C6/C7/H3), adopting envelope conformation.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 2-nitroresorcin acetate (239 mg, 1.0 mmol) was dissolved in chloroform (20 ml). At 273-278 K, anhydrous AlCl3 (133.5 mg, 1 mmol) was added to this solution, the reaction was stirred at room temperature for 1 h, and then hydrochloric acid (5 ml, 10%) was added. The reaction mixture was extracted with chloroform and dried with anhydrous sodium sulfate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield; 144 mg, 73%, m.p. 360 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3253, 3083, 2946, 1758, 1530, 1204, 1138, 978, 847. Analysis required for C8H7NO5: C 48.74; H 3.58; N 7.10%. Found: C 48.80; H 3.61; N 7.08%.

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as ashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H7NO5F(000) = 408
Mr = 197.15Dx = 1.558 Mg m3
Monoclinic, P21/nMelting point: 360 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.881 (2) ÅCell parameters from 2650 reflections
b = 5.0543 (10) Åθ = 2.2–27.5°
c = 15.318 (3) ŵ = 0.13 mm1
β = 93.75 (3)°T = 153 K
V = 840.6 (3) Å3Block, colorless
Z = 40.24 × 0.20 × 0.16 mm

Data collection

Bruker P4 diffractometer1449 independent reflections
Radiation source: fine-focus sealed tube1232 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.969, Tmax = 0.979k = −6→5
5058 measured reflectionsl = −18→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1223P] where P = (Fo2 + 2Fc2)/3
1449 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.14195 (8)0.58036 (19)0.89666 (6)0.0279 (3)
O20.31702 (7)0.35401 (18)0.93249 (5)0.0244 (3)
O30.59843 (8)1.04495 (18)0.88687 (5)0.0223 (2)
H30.63501.11920.84860.033*
O40.67226 (8)1.08418 (17)0.72904 (5)0.0230 (2)
O50.63078 (8)0.77288 (18)0.63478 (5)0.0247 (2)
N10.61633 (9)0.8778 (2)0.70551 (6)0.0179 (3)
C10.13908 (11)0.2225 (3)1.00085 (8)0.0213 (3)
H1A0.05320.26201.00410.032*
H1B0.18070.24251.05770.032*
H1C0.14820.04380.98100.032*
C20.19373 (11)0.4079 (2)0.93821 (7)0.0179 (3)
C30.38267 (10)0.5030 (3)0.87381 (8)0.0195 (3)
C40.38272 (11)0.4184 (3)0.78716 (8)0.0207 (3)
H40.33230.28040.76660.025*
C50.46001 (11)0.5463 (2)0.73292 (8)0.0194 (3)
H50.46330.49190.67510.023*
C60.53337 (10)0.7573 (2)0.76450 (7)0.0164 (3)
C70.53043 (10)0.8455 (2)0.85126 (7)0.0168 (3)
C80.45238 (10)0.7116 (2)0.90598 (7)0.0189 (3)
H80.44800.76430.96390.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0222 (5)0.0277 (6)0.0342 (5)0.0061 (4)0.0054 (4)0.0129 (4)
O20.0180 (5)0.0266 (5)0.0290 (5)0.0010 (4)0.0041 (3)0.0131 (4)
O30.0269 (5)0.0225 (5)0.0177 (4)−0.0062 (4)0.0019 (4)−0.0023 (3)
O40.0233 (5)0.0224 (5)0.0232 (5)−0.0057 (4)0.0018 (3)−0.0005 (4)
O50.0302 (5)0.0282 (5)0.0164 (4)0.0030 (4)0.0064 (4)−0.0034 (4)
N10.0165 (5)0.0200 (6)0.0171 (5)0.0032 (4)0.0004 (4)0.0005 (4)
C10.0219 (6)0.0208 (7)0.0216 (6)−0.0008 (5)0.0033 (5)0.0030 (5)
C20.0176 (6)0.0169 (6)0.0190 (6)−0.0003 (5)0.0003 (5)−0.0026 (5)
C30.0143 (6)0.0208 (7)0.0235 (6)0.0042 (5)0.0021 (5)0.0071 (5)
C40.0177 (6)0.0182 (7)0.0255 (7)−0.0008 (5)−0.0033 (5)0.0010 (5)
C50.0204 (6)0.0191 (7)0.0180 (6)0.0029 (5)−0.0022 (5)−0.0012 (5)
C60.0150 (6)0.0177 (6)0.0166 (6)0.0033 (5)0.0012 (4)0.0018 (4)
C70.0162 (6)0.0158 (6)0.0182 (6)0.0035 (5)−0.0016 (4)−0.0003 (5)
C80.0197 (6)0.0211 (7)0.0159 (6)0.0043 (5)0.0022 (5)0.0017 (5)

Geometric parameters (Å, °)

O1—C21.1982 (15)C1—H1C0.9600
O2—C21.3773 (15)C3—C81.3716 (18)
O2—C31.4032 (14)C3—C41.3944 (17)
O3—C71.3447 (15)C4—C51.3807 (17)
O3—H30.8200C4—H40.9300
O4—N11.2489 (13)C5—C61.3994 (17)
O5—N11.2255 (12)C5—H50.9300
N1—C61.4521 (15)C6—C71.4041 (16)
C1—C21.4923 (16)C7—C81.4054 (17)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600
C2—O2—C3118.26 (9)C4—C3—O2118.51 (11)
C7—O3—H3109.5C5—C4—C3117.87 (12)
O5—N1—O4121.88 (10)C5—C4—H4121.1
O5—N1—C6119.32 (10)C3—C4—H4121.1
O4—N1—C6118.79 (9)C4—C5—C6120.33 (11)
C2—C1—H1A109.5C4—C5—H5119.8
C2—C1—H1B109.5C6—C5—H5119.8
H1A—C1—H1B109.5C5—C6—C7121.42 (11)
C2—C1—H1C109.5C5—C6—N1117.92 (10)
H1A—C1—H1C109.5C7—C6—N1120.63 (11)
H1B—C1—H1C109.5O3—C7—C6125.16 (10)
O1—C2—O2122.43 (11)O3—C7—C8117.20 (10)
O1—C2—C1127.24 (11)C6—C7—C8117.62 (11)
O2—C2—C1110.33 (10)C3—C8—C7119.85 (11)
C8—C3—C4122.88 (11)C3—C8—H8120.1
C8—C3—O2118.37 (10)C7—C8—H8120.1
C3—O2—C2—O1−1.83 (17)O5—N1—C6—C7169.13 (10)
C3—O2—C2—C1177.59 (10)O4—N1—C6—C7−9.92 (16)
C2—O2—C3—C898.78 (13)C5—C6—C7—O3179.46 (10)
C2—O2—C3—C4−86.75 (14)N1—C6—C7—O31.57 (18)
C8—C3—C4—C52.32 (18)C5—C6—C7—C80.95 (17)
O2—C3—C4—C5−171.88 (10)N1—C6—C7—C8−176.94 (10)
C3—C4—C5—C6−1.34 (18)C4—C3—C8—C7−1.64 (18)
C4—C5—C6—C7−0.25 (18)O2—C3—C8—C7172.57 (10)
C4—C5—C6—N1177.70 (10)O3—C7—C8—C3−178.67 (10)
O5—N1—C6—C5−8.83 (15)C6—C7—C8—C3−0.03 (17)
O4—N1—C6—C5172.12 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.912.605 (2)142
C5—H5···O1i0.932.583.229 (2)127
C8—H8···O3ii0.932.563.481 (2)170

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2582).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett.15, 737–741. [PubMed]
  • Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett.11, 757–760. [PubMed]
  • Ji, X. & Li, C. (2006). Synthesis, 15, 2478–2482.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem.8, 353–362.
  • Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc.118, 8542–8548.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography