PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o38.
Published online 2008 December 6. doi:  10.1107/S1600536808040506
PMCID: PMC2967955

N-Benzyl-N-methyl­morpholinium chloride

Abstract

In the title compound, C12H18NO+·Cl, the cations and anions are inter­connected by weak C—H(...)Cl hydrogen bonds. The morpholine ring system adopts a chair conformation.

Related literature

For general background to ionic liquids, see: Abedin et al. (2004 [triangle], 2005 [triangle]); Kim et al. (2005 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o38-scheme1.jpg

Experimental

Crystal data

  • C12H18NO+·Cl
  • M r = 227.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o38-efi1.jpg
  • a = 9.8693 (8) Å
  • b = 9.5732 (8) Å
  • c = 24.989 (2) Å
  • V = 2361.0 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 113 (2) K
  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.937, T max = 0.954
  • 23984 measured reflections
  • 2806 independent reflections
  • 2658 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.103
  • S = 1.14
  • 2806 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040506/bt2824sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040506/bt2824Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids (ILs) by ion metathesis (Kim et al., 2005). The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Abedin et al., 2004; Abedin et al., 2005). In particular, ILs based on the morpholinium cation are favored because of their low cost, easy synthesis, and electrochemical stability (Kim et al., 2006). We report here a new example structure of this class.

The molecular structure of the title compound is illustrated in Fig. 1. The morpholine unit adopts a chair conformation. The bond distances and angles in the cation are normal within experimental error.

The crystal packing is illustrated in Fig. 2. The Cl-anion is involved in weak C—H···Cl hydrogen bonds. Each cation forms a network of weak C—H···Cl hydrogen bonds to surrounding chloride ions.

Experimental

Under vigorous stirring, benzyl chloride (0.12 mol) was added to a solution of 4-methylmorpholine (0.1 mol) in 20 ml of acetonitrile. The mixture was stirred at 60 °C for 5 h. The solvent was removed under reduced pressure. The remaining brownish, viscous liquid crystallized slowly at room temperature in ethanol and acetone [1/20(v/v)].

Refinement

H atoms were included in the refinement in the riding and rotation model approximation, with C–H = 0.96–0.97 Å and Uiso (H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
A view of the molecular structure of the title compund, showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The packing of the title compound, showing hydrogen-bond interactions as dashed lines.

Crystal data

C12H18NO+·ClDx = 1.281 Mg m3
Mr = 227.72Mo Kα radiation, λ = 0.71070 Å
Orthorhombic, PbcaCell parameters from 5341 reflections
a = 9.8693 (8) Åθ = 1.6–27.9°
b = 9.5732 (8) ŵ = 0.30 mm1
c = 24.989 (2) ÅT = 113 K
V = 2361.0 (4) Å3Prism, colorless
Z = 80.22 × 0.20 × 0.16 mm
F(000) = 976

Data collection

Rigaku Saturn CCD area-detector diffractometer2806 independent reflections
Radiation source: rotating anode2658 reflections with I > 2σ(I)
confocalRint = 0.045
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.6°
ω and [var phi] scansh = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −12→12
Tmin = 0.937, Tmax = 0.954l = −32→32
23984 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0504P)2 + 0.8783P] where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.06425 (3)0.24262 (3)0.579326 (12)0.01816 (12)
O10.67612 (10)0.15043 (10)0.57658 (4)0.0243 (2)
N10.44588 (10)0.33344 (11)0.59493 (4)0.0150 (2)
C10.59109 (13)0.37790 (14)0.60368 (5)0.0188 (3)
H1A0.61580.36220.64160.023*
H1B0.59970.47910.59620.023*
C20.68808 (14)0.29772 (15)0.56803 (6)0.0215 (3)
H2A0.66830.31930.53010.026*
H2B0.78220.32750.57570.026*
C30.54189 (14)0.10657 (14)0.56303 (6)0.0224 (3)
H3A0.53490.00390.56680.027*
H3B0.52280.13070.52520.027*
C40.43833 (13)0.17620 (14)0.59888 (5)0.0178 (3)
H4A0.34640.14480.58860.021*
H4B0.45430.14750.63640.021*
C50.35303 (13)0.40397 (14)0.63597 (5)0.0183 (3)
H5A0.37100.50570.63520.022*
H5B0.25800.38990.62450.022*
C60.36606 (13)0.35467 (14)0.69294 (5)0.0181 (3)
C70.28094 (14)0.24900 (14)0.71151 (6)0.0210 (3)
H70.21930.20530.68760.025*
C80.28540 (15)0.20693 (17)0.76477 (6)0.0278 (3)
H80.22720.13460.77700.033*
C90.37464 (16)0.27038 (17)0.79996 (6)0.0295 (3)
H90.37840.24110.83630.035*
C100.45814 (16)0.37636 (18)0.78209 (6)0.0301 (4)
H100.51880.42030.80630.036*
C110.45410 (14)0.41926 (16)0.72890 (6)0.0240 (3)
H110.51150.49270.71710.029*
C120.39548 (14)0.38154 (14)0.54104 (5)0.0193 (3)
H12A0.39810.48380.53940.029*
H12B0.30210.34940.53580.029*
H12C0.45340.34270.51290.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01759 (19)0.01818 (19)0.01873 (18)0.00039 (11)−0.00043 (10)0.00056 (11)
O10.0205 (5)0.0204 (5)0.0320 (5)0.0046 (4)0.0022 (4)0.0013 (4)
N10.0162 (5)0.0133 (5)0.0156 (5)0.0002 (4)−0.0003 (4)0.0007 (4)
C10.0169 (6)0.0186 (6)0.0209 (6)−0.0027 (5)0.0002 (5)−0.0015 (5)
C20.0178 (6)0.0211 (7)0.0257 (7)−0.0011 (5)0.0023 (5)0.0020 (5)
C30.0251 (7)0.0154 (6)0.0267 (7)0.0002 (5)0.0023 (5)−0.0025 (5)
C40.0212 (6)0.0114 (6)0.0209 (6)−0.0020 (5)0.0020 (5)0.0019 (5)
C50.0191 (6)0.0173 (6)0.0183 (6)0.0031 (5)0.0018 (5)−0.0001 (5)
C60.0175 (6)0.0193 (6)0.0175 (6)0.0045 (5)0.0005 (5)−0.0013 (5)
C70.0194 (6)0.0250 (7)0.0187 (6)−0.0002 (5)0.0004 (5)−0.0006 (5)
C80.0292 (7)0.0310 (8)0.0233 (7)0.0037 (6)0.0055 (6)0.0055 (6)
C90.0317 (8)0.0398 (9)0.0171 (6)0.0156 (7)−0.0001 (6)0.0008 (6)
C100.0285 (7)0.0394 (9)0.0226 (7)0.0094 (6)−0.0078 (6)−0.0121 (6)
C110.0226 (7)0.0236 (7)0.0257 (7)0.0008 (5)−0.0008 (5)−0.0075 (6)
C120.0212 (6)0.0202 (6)0.0166 (6)0.0002 (5)−0.0008 (5)0.0027 (5)

Geometric parameters (Å, °)

O1—C31.4304 (17)C5—H5A0.9900
O1—C21.4310 (17)C5—H5B0.9900
N1—C121.5075 (16)C6—C71.3943 (19)
N1—C41.5104 (18)C6—C111.3946 (19)
N1—C11.5109 (16)C7—C81.3914 (19)
N1—C51.5321 (16)C7—H70.9500
C1—C21.5164 (19)C8—C91.385 (2)
C1—H1A0.9900C8—H80.9500
C1—H1B0.9900C9—C101.381 (2)
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900C10—C111.392 (2)
C3—C41.5138 (18)C10—H100.9500
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—H12A0.9800
C4—H4A0.9900C12—H12B0.9800
C4—H4B0.9900C12—H12C0.9800
C5—C61.5056 (17)
C3—O1—C2109.28 (10)C6—C5—N1116.35 (10)
C12—N1—C4110.28 (10)C6—C5—H5A108.2
C12—N1—C1110.87 (10)N1—C5—H5A108.2
C4—N1—C1108.54 (10)C6—C5—H5B108.2
C12—N1—C5105.42 (9)N1—C5—H5B108.2
C4—N1—C5111.47 (9)H5A—C5—H5B107.4
C1—N1—C5110.26 (10)C7—C6—C11118.87 (12)
N1—C1—C2111.78 (11)C7—C6—C5119.38 (12)
N1—C1—H1A109.3C11—C6—C5121.57 (12)
C2—C1—H1A109.3C8—C7—C6120.61 (13)
N1—C1—H1B109.3C8—C7—H7119.7
C2—C1—H1B109.3C6—C7—H7119.7
H1A—C1—H1B107.9C9—C8—C7120.04 (14)
O1—C2—C1111.04 (11)C9—C8—H8120.0
O1—C2—H2A109.4C7—C8—H8120.0
C1—C2—H2A109.4C10—C9—C8119.76 (14)
O1—C2—H2B109.4C10—C9—H9120.1
C1—C2—H2B109.4C8—C9—H9120.1
H2A—C2—H2B108.0C9—C10—C11120.56 (14)
O1—C3—C4110.85 (11)C9—C10—H10119.7
O1—C3—H3A109.5C11—C10—H10119.7
C4—C3—H3A109.5C10—C11—C6120.15 (14)
O1—C3—H3B109.5C10—C11—H11119.9
C4—C3—H3B109.5C6—C11—H11119.9
H3A—C3—H3B108.1N1—C12—H12A109.5
N1—C4—C3111.52 (10)N1—C12—H12B109.5
N1—C4—H4A109.3H12A—C12—H12B109.5
C3—C4—H4A109.3N1—C12—H12C109.5
N1—C4—H4B109.3H12A—C12—H12C109.5
C3—C4—H4B109.3H12B—C12—H12C109.5
H4A—C4—H4B108.0
C12—N1—C1—C2−70.18 (14)C1—N1—C5—C6−70.30 (14)
C4—N1—C1—C251.09 (13)N1—C5—C6—C7−93.35 (14)
C5—N1—C1—C2173.45 (10)N1—C5—C6—C1191.63 (15)
C3—O1—C2—C161.86 (14)C11—C6—C7—C8−1.1 (2)
N1—C1—C2—O1−57.37 (14)C5—C6—C7—C8−176.30 (12)
C2—O1—C3—C4−62.50 (14)C6—C7—C8—C90.2 (2)
C12—N1—C4—C370.00 (13)C7—C8—C9—C100.6 (2)
C1—N1—C4—C3−51.64 (13)C8—C9—C10—C11−0.5 (2)
C5—N1—C4—C3−173.26 (11)C9—C10—C11—C6−0.5 (2)
O1—C3—C4—N158.57 (14)C7—C6—C11—C101.3 (2)
C12—N1—C5—C6169.98 (11)C5—C6—C11—C10176.32 (12)
C4—N1—C5—C650.32 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.992.703.6610 (14)163
C5—H5A···Cl1ii0.992.743.6304 (14)150
C5—H5B···Cl10.992.633.5373 (14)152
C9—H9···Cl1iii0.952.803.5599 (16)138
C12—H12A···Cl1ii0.982.703.6085 (14)155
C12—H12B···Cl10.982.783.6566 (14)149
C12—H12C···Cl1iv0.982.683.6380 (14)166

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1/2, y+1/2, z; (iii) x+1/2, y, −z+3/2; (iv) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2824).

References

  • Abedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun.6, 510–514.
  • Abedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys.7, 2333–2339. [PubMed]
  • Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem.16, 1315–1317.
  • Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673–5678.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography