PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o37.
Published online 2008 December 6. doi:  10.1107/S1600536808040658
PMCID: PMC2967954

(Z)-Methyl 4-(1,3-benzothia­zol-2-yl­sulfan­yl)-2-(methoxy­imino)-3-oxo­butanoate

Abstract

In the mol­ecular structure of the title compound, C13H12N2O4S2, there is a dihedral angle of 0.41 (13)° between the benzene and thia­zole rings. In the crystal, inversion dimers linked by two C—H(...)O inter­actions together with π–π stacking between the parallel benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.673 (2) Å].

Related literature

For general background to benzothia­zole derivatives and their biological activities, see: Bradshaw et al. (2008 [triangle]); Moharram (1990 [triangle]); Spillane et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o37-scheme1.jpg

Experimental

Crystal data

  • C13H12N2O4S2
  • M r = 324.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o37-efi1.jpg
  • a = 8.019 (3) Å
  • b = 10.037 (4) Å
  • c = 10.662 (5) Å
  • α = 76.44 (2)°
  • β = 67.997 (14)°
  • γ = 74.964 (15)°
  • V = 759.3 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 293 (2) K
  • 0.22 × 0.19 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.913, T max = 0.939
  • 7739 measured reflections
  • 2620 independent reflections
  • 2278 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.101
  • S = 1.10
  • 2620 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040658/at2688sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040658/at2688Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the National Key Technologies R&D Program of China (2006BAE01A01–13) for supporting this work.

supplementary crystallographic information

Comment

A wide range of biological activities have been attributed to compounds containing benzothiazole moiety such as anticancer (Bradshaw et al., 2008), antibacterial (Moharram et al., 1990) and cytotoxic activity (Spillane et al., 2007), Herein we present the crystal structure of the title benzothiazole derivative (I).

The crystal structure of the title compound (I) is represented in Fig. 1. There is a dihedral angle of 0.41 (13)° between the benzene ring and thiazole ring. In the crystal structure, weak intermolecular C—H···O interactions (Table 1), together with π-π stacking between parallel benzene rings of adjacent molecules stabilize the packing, the centroid-to-centroid distance of two benzene rings is 3.673 (2)Å (symmetry codes: 1 - x,-y,1 - z).

Experimental

A solution of (Z)-methyl-4-bromo-2-(methoxyimino)-3-oxobutanoate 30 ml (2.38 g, 0.01 mol) in methanol (10 ml) was added dropwise to a stirred solution of benzothiazole-2-thiol (1.67 g, 0.01 mol) and sodium hydroxide (0.40 g, 0.01 mol) in water (25 ml). The resulting mixture was stirred at room temperature for 3 h, the mixture was filtered and the residue was dissolved in 30 ml e thanol, Single crystals of (I) were obtained after several days.

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2–1.5 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C13H12N2O4S2Z = 2
Mr = 324.39F(000) = 336
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.019 (3) ÅCell parameters from 2679 reflections
b = 10.037 (4) Åθ = 2.1–25.0°
c = 10.662 (5) ŵ = 0.37 mm1
α = 76.44 (2)°T = 293 K
β = 67.997 (14)°Block, colourless
γ = 74.964 (15)°0.22 × 0.19 × 0.18 mm
V = 759.3 (6) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2620 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −9→9
Tmin = 0.913, Tmax = 0.939k = −11→11
7739 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1857P] where P = (Fo2 + 2Fc2)/3
2620 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2301 (4)0.0381 (3)0.4741 (3)0.0665 (7)
H10.12060.02980.54550.080*
C20.3264 (5)−0.0698 (2)0.3972 (3)0.0788 (9)
H20.2803−0.15140.41850.095*
C30.4890 (4)−0.0581 (3)0.2898 (3)0.0735 (8)
H30.5497−0.13200.24070.088*
C40.5617 (4)0.0593 (3)0.2549 (3)0.0635 (6)
H40.67070.06700.18290.076*
C50.4664 (3)0.1679 (2)0.3314 (2)0.0472 (5)
C60.3029 (3)0.1583 (2)0.4407 (2)0.0452 (5)
C70.3251 (3)0.3681 (2)0.45184 (18)0.0387 (4)
C80.0771 (3)0.5086 (2)0.65173 (19)0.0436 (5)
H8A0.01380.59880.67980.052*
H8B−0.00680.47060.63020.052*
C90.1277 (3)0.41269 (19)0.76915 (19)0.0399 (4)
C10−0.0218 (3)0.3515 (2)0.88308 (19)0.0403 (4)
C110.0216 (3)0.2738 (2)1.0097 (2)0.0443 (5)
C12−0.4696 (3)0.3219 (3)0.9528 (3)0.0694 (7)
H12A−0.55520.27651.03030.104*
H12B−0.44540.28090.87340.104*
H12C−0.52040.41950.93690.104*
C130.1207 (5)0.0538 (3)1.1217 (3)0.0890 (9)
H13A0.1554−0.04241.10900.134*
H13B0.01740.06461.20400.134*
H13C0.22150.08281.12870.134*
N10.2241 (2)0.27441 (17)0.50850 (16)0.0448 (4)
N2−0.1769 (2)0.36936 (18)0.86710 (16)0.0451 (4)
O10.28034 (19)0.38332 (16)0.77643 (15)0.0530 (4)
O20.0143 (3)0.32938 (19)1.09837 (17)0.0774 (5)
O30.0721 (2)0.13890 (16)1.00578 (16)0.0638 (4)
O4−0.30078 (19)0.30477 (17)0.97942 (15)0.0568 (4)
S10.52463 (7)0.32799 (6)0.31355 (5)0.05263 (18)
S20.27235 (7)0.53273 (5)0.50010 (5)0.04578 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0938 (19)0.0544 (14)0.0641 (14)−0.0322 (13)−0.0349 (13)0.0011 (11)
C20.138 (3)0.0375 (13)0.093 (2)−0.0260 (15)−0.074 (2)0.0004 (13)
C30.103 (2)0.0500 (14)0.0869 (19)0.0087 (14)−0.0594 (18)−0.0267 (13)
C40.0734 (16)0.0570 (14)0.0702 (15)0.0041 (12)−0.0340 (13)−0.0302 (12)
C50.0562 (12)0.0444 (11)0.0480 (11)−0.0042 (9)−0.0252 (10)−0.0131 (9)
C60.0596 (12)0.0385 (11)0.0474 (11)−0.0108 (9)−0.0292 (10)−0.0048 (8)
C70.0414 (10)0.0418 (10)0.0358 (9)−0.0071 (8)−0.0154 (8)−0.0082 (8)
C80.0432 (11)0.0490 (11)0.0406 (10)0.0008 (9)−0.0174 (8)−0.0155 (8)
C90.0420 (11)0.0403 (10)0.0438 (10)0.0002 (8)−0.0203 (8)−0.0174 (8)
C100.0438 (10)0.0413 (10)0.0424 (10)−0.0005 (8)−0.0213 (8)−0.0155 (8)
C110.0440 (11)0.0488 (12)0.0439 (10)−0.0041 (9)−0.0188 (9)−0.0127 (9)
C120.0513 (13)0.0842 (18)0.0843 (17)−0.0193 (12)−0.0342 (13)−0.0082 (14)
C130.127 (3)0.0679 (18)0.0844 (19)−0.0117 (17)−0.068 (2)0.0130 (15)
N10.0484 (9)0.0457 (10)0.0433 (9)−0.0136 (8)−0.0150 (7)−0.0077 (7)
N20.0446 (9)0.0497 (10)0.0449 (9)−0.0089 (7)−0.0185 (7)−0.0088 (7)
O10.0438 (8)0.0620 (9)0.0594 (9)−0.0054 (7)−0.0272 (7)−0.0094 (7)
O20.1180 (15)0.0696 (11)0.0605 (10)0.0034 (10)−0.0516 (10)−0.0270 (9)
O30.0931 (12)0.0467 (9)0.0642 (10)−0.0046 (8)−0.0473 (9)−0.0069 (7)
O40.0463 (8)0.0745 (11)0.0546 (9)−0.0184 (7)−0.0238 (7)0.0000 (7)
S10.0523 (3)0.0552 (4)0.0485 (3)−0.0167 (3)−0.0037 (2)−0.0193 (2)
S20.0515 (3)0.0413 (3)0.0472 (3)−0.0109 (2)−0.0144 (2)−0.0131 (2)

Geometric parameters (Å, °)

C1—C61.389 (3)C8—H8A0.9700
C1—C21.397 (4)C8—H8B0.9700
C1—H10.9300C9—O11.210 (2)
C2—C31.387 (4)C9—C101.493 (3)
C2—H20.9300C10—N21.279 (2)
C3—C41.362 (4)C10—C111.506 (3)
C3—H30.9300C11—O21.182 (2)
C4—C51.398 (3)C11—O31.315 (3)
C4—H40.9300C12—O41.445 (3)
C5—C61.398 (3)C12—H12A0.9600
C5—S11.736 (2)C12—H12B0.9600
C6—N11.397 (3)C12—H12C0.9600
C7—N11.291 (2)C13—O31.450 (3)
C7—S21.745 (2)C13—H13A0.9600
C7—S11.753 (2)C13—H13B0.9600
C8—C91.507 (3)C13—H13C0.9600
C8—S21.800 (2)N2—O41.386 (2)
C6—C1—C2118.0 (3)O1—C9—C10118.71 (17)
C6—C1—H1121.0O1—C9—C8124.10 (19)
C2—C1—H1121.0C10—C9—C8117.19 (16)
C3—C2—C1121.5 (2)N2—C10—C9118.18 (17)
C3—C2—H2119.3N2—C10—C11124.72 (18)
C1—C2—H2119.3C9—C10—C11117.11 (16)
C4—C3—C2121.3 (2)O2—C11—O3125.40 (19)
C4—C3—H3119.3O2—C11—C10123.41 (19)
C2—C3—H3119.3O3—C11—C10111.17 (16)
C3—C4—C5117.6 (3)O4—C12—H12A109.5
C3—C4—H4121.2O4—C12—H12B109.5
C5—C4—H4121.2H12A—C12—H12B109.5
C6—C5—C4122.2 (2)O4—C12—H12C109.5
C6—C5—S1109.43 (15)H12A—C12—H12C109.5
C4—C5—S1128.4 (2)H12B—C12—H12C109.5
C1—C6—N1124.8 (2)O3—C13—H13A109.5
C1—C6—C5119.4 (2)O3—C13—H13B109.5
N1—C6—C5115.76 (18)H13A—C13—H13B109.5
N1—C7—S2124.48 (15)O3—C13—H13C109.5
N1—C7—S1117.24 (15)H13A—C13—H13C109.5
S2—C7—S1118.25 (11)H13B—C13—H13C109.5
C9—C8—S2113.07 (14)C7—N1—C6109.26 (17)
C9—C8—H8A109.0C10—N2—O4111.87 (15)
S2—C8—H8A109.0C11—O3—C13115.94 (19)
C9—C8—H8B109.0N2—O4—C12109.46 (16)
S2—C8—H8B109.0C5—S1—C788.31 (10)
H8A—C8—H8B107.8C7—S2—C898.95 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.553.398 (3)152

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2688).

References

  • Bradshaw, T. D., Stone, E. L., Trapani, V., leong, C. O., Matthews, C. S., Poele, R. T. & Stevens, M. G. (2008). Breast Cancer Res. Treat.110, 57–68. [PubMed]
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Moharram, H. H. (1990). Arch. Pharm. Res.13, 14–18.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spillane, C. B., Fletcher, N. C., Rountree, S. M., Berg, H. V., Chanduloy, S., Morgan, J. L. & Keene, F. R. (2007). J. Biol. Inorg. Chem.12, 797–807. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography