PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o34–o35.
Published online 2008 December 6. doi:  10.1107/S1600536808040440
PMCID: PMC2967952

3-(2-Hydroxy­ethyl)-2-(p-tolyl­amino)­quinazolin-4(3H)-one

Abstract

In the title compound, C17H17N3O2, the quinazolinone ring system is essentially planar. The benzene ring is twisted with respect to it by a dihedral angle of 32.7 (5)°. The mol­ecular conformation is stabilized by an N—H(...)O hydrogen bond, and the crystal structure is stabilized by inter­molecular O—H(...)N inter­actions.

Related literature

For the biological properties of quinazolinone derivatives, see: Pandeya et al. (1999 [triangle]); Shiba et al. (1997 [triangle]), Malamas & Millen (1991 [triangle]); Mannschreck et al. (1984 [triangle]); Kung et al. (1999 [triangle]); Bartroli et al. (1998 [triangle]); Palmer et al. (1997 [triangle]); Tsou et al. (2001 [triangle]); Matsuno et al. (2002 [triangle]). For the synthesis, see: Yang et al. (2008 [triangle]). For related structures, see: Hu et al. (2006 [triangle]); Qu et al. (2008 [triangle]); Zeng et al. (2008 [triangle]); Sun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o34-scheme1.jpg

Experimental

Crystal data

  • C17H17N3O2
  • M r = 295.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o34-efi1.jpg
  • a = 7.8589 (2) Å
  • b = 19.1706 (5) Å
  • c = 10.6696 (3) Å
  • β = 111.082 (3)°
  • V = 1499.89 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.10 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.981, T max = 0.993
  • 15404 measured reflections
  • 2938 independent reflections
  • 2074 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.138
  • S = 1.07
  • 2938 reflections
  • 206 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040440/bt2827sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040440/bt2827Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Xianning College for financial support of this work and for providing laboratory and analytical facilities. The authors also acknowledge Dr Xiang-Gao Meng, Central China Normal University Whuhan, for the data collection.

supplementary crystallographic information

Comment

The synthesis of derivatives of quinazolinone has been the focus of great interest. This is due, in part, to the broad spectrum of biological properties of these compounds. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. The compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. The bond lengths and angles are unexceptional. The quinazolinone ring system is almost planar, with a maximum deviation of 0.037Å for N2; the phenyl ring is twisted with respect to it, with a dihedral angle of 32.7 (5)°. Intramolecular N—H···O and intermolecular O—H···N hydrogen bonds (Fig. 2 and Table 2) stabilize the molecular conformation and the crystal structure.

Experimental

To a solution of 1-(4-methyl-phenyl)- 3-(2-ethoxycarbonylphenyl) carbodiimide (3 mmol) in THF (15 ml) was added 2-aminoethanol (3 mmol). After the reaction mixture was allowed to stand for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 4 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. The product was recrystallized from methanol-dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction.

Refinement

All H atoms were located in difference maps. Those bonded to C were treated as riding atoms with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2. The coordinates of the H atoms bonded to N and O were refined with a distance restraint of O—H = 0.88 (2)Å and Uiso = 1.2Ueq (O, N).

Figures

Fig. 1.
View of the molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing of the title compound, showing the hydrogen bonds as dashed lines.

Crystal data

C17H17N3O2F(000) = 624
Mr = 295.34Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2754 reflections
a = 7.8589 (2) Åθ = 2.3–23.8°
b = 19.1706 (5) ŵ = 0.09 mm1
c = 10.6696 (3) ÅT = 298 K
β = 111.082 (3)°Block, colorless
V = 1499.89 (8) Å30.10 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer2938 independent reflections
Radiation source: fine-focus sealed tube2074 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→9
Tmin = 0.981, Tmax = 0.993k = −23→23
15404 measured reflectionsl = −13→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.081P)2 + 0.012P] where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.713 (2)0.6964 (7)0.4651 (16)0.077 (5)
H1A0.59170.68100.45120.116*
H1B0.79750.67380.54320.116*
H1C0.74340.68460.38810.116*
C20.7255 (16)0.7741 (6)0.4853 (13)0.053 (3)
C30.6939 (17)0.8197 (6)0.3785 (13)0.056 (3)
H30.66020.80190.29180.068*
C40.7113 (16)0.8908 (6)0.3978 (11)0.050 (3)
H40.68920.92020.32430.060*
C50.7611 (14)0.9190 (5)0.5253 (11)0.042 (3)
C60.7883 (15)0.8745 (6)0.6330 (12)0.048 (3)
H60.81850.89240.71930.058*
C70.7703 (16)0.8033 (6)0.6116 (13)0.053 (3)
H70.78910.77400.68480.063*
C80.8785 (14)1.0302 (5)0.6438 (11)0.041 (3)
C90.9600 (16)1.1474 (6)0.7315 (11)0.047 (3)
C101.0902 (15)1.1136 (6)0.8487 (11)0.044 (3)
C111.1021 (15)1.0410 (6)0.8529 (11)0.044 (3)
C121.2277 (17)1.0094 (7)0.9662 (12)0.059 (3)
H121.23650.96100.97110.070*
C131.3379 (19)1.0490 (8)1.0699 (13)0.066 (4)
H131.42131.02721.14480.080*
C141.3277 (19)1.1213 (7)1.0656 (12)0.064 (4)
H141.40401.14781.13660.077*
C151.2045 (18)1.1529 (7)0.9560 (12)0.057 (3)
H151.19651.20130.95280.068*
C160.7068 (16)1.1345 (6)0.5175 (11)0.049 (3)
H16A0.67341.17870.54630.058*
H16B0.59991.10470.49120.058*
C170.7589 (16)1.1470 (6)0.3967 (11)0.051 (3)
H17A0.67861.18170.33900.061*
H17B0.88281.16450.42530.061*
N10.7697 (13)0.9925 (5)0.5361 (9)0.048 (3)
H10.737 (16)1.015 (6)0.461 (9)0.057*
N20.8506 (12)1.1022 (4)0.6320 (9)0.042 (2)
N30.9966 (12)0.9998 (5)0.7464 (9)0.046 (2)
O10.7451 (12)1.0832 (4)0.3238 (8)0.055 (2)
H1D0.84 (2)1.074 (7)0.306 (15)0.083*
O20.9394 (12)1.2106 (4)0.7163 (9)0.064 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.090 (11)0.048 (8)0.099 (12)−0.014 (7)0.040 (10)−0.019 (7)
C20.049 (7)0.045 (7)0.068 (8)−0.010 (5)0.025 (6)−0.011 (6)
C30.064 (8)0.056 (7)0.054 (8)−0.018 (6)0.028 (7)−0.018 (6)
C40.052 (7)0.051 (7)0.046 (7)−0.011 (5)0.018 (6)−0.003 (5)
C50.037 (6)0.040 (6)0.046 (6)−0.009 (4)0.013 (5)−0.003 (5)
C60.051 (7)0.047 (7)0.046 (6)−0.010 (5)0.016 (6)−0.006 (5)
C70.052 (8)0.045 (7)0.059 (8)−0.008 (5)0.018 (6)0.004 (5)
C80.041 (6)0.037 (6)0.044 (6)−0.003 (5)0.015 (5)−0.004 (5)
C90.056 (7)0.038 (6)0.051 (7)−0.001 (5)0.025 (6)−0.008 (5)
C100.049 (7)0.041 (6)0.043 (6)−0.004 (5)0.020 (5)−0.007 (5)
C110.045 (7)0.045 (6)0.040 (6)−0.003 (5)0.013 (5)−0.006 (5)
C120.066 (8)0.052 (7)0.047 (7)0.001 (6)0.007 (6)0.000 (5)
C130.065 (9)0.075 (9)0.045 (7)−0.002 (7)0.002 (7)−0.005 (6)
C140.070 (9)0.070 (9)0.044 (7)−0.016 (7)0.010 (7)−0.015 (6)
C150.069 (9)0.049 (7)0.052 (7)−0.011 (6)0.022 (7)−0.014 (6)
C160.043 (7)0.044 (6)0.055 (7)0.009 (5)0.013 (6)0.001 (5)
C170.052 (7)0.043 (6)0.047 (7)0.005 (5)0.007 (6)0.003 (5)
N10.052 (6)0.040 (5)0.041 (5)−0.005 (4)0.006 (5)0.000 (4)
N20.043 (5)0.037 (5)0.044 (5)0.003 (4)0.014 (4)−0.001 (4)
N30.050 (6)0.037 (5)0.043 (5)−0.001 (4)0.007 (5)−0.003 (4)
O10.060 (6)0.053 (5)0.049 (5)0.005 (4)0.015 (4)−0.003 (4)
O20.083 (7)0.035 (5)0.069 (6)0.005 (4)0.020 (5)−0.006 (4)

Geometric parameters (Å, °)

C1—C21.505 (17)C10—C111.394 (15)
C1—H1A0.9600C10—C151.394 (15)
C1—H1B0.9600C11—N31.388 (14)
C1—H1C0.9600C11—C121.395 (16)
C2—C71.382 (17)C12—C131.365 (17)
C2—C31.385 (18)C12—H120.9300
C3—C41.380 (16)C13—C141.387 (19)
C3—H30.9300C13—H130.9300
C4—C51.383 (15)C14—C151.363 (18)
C4—H40.9300C14—H140.9300
C5—C61.384 (15)C15—H150.9300
C5—N11.414 (13)C16—N21.470 (14)
C6—C71.383 (15)C16—C171.506 (16)
C6—H60.9300C16—H16A0.9700
C7—H70.9300C16—H16B0.9700
C8—N31.292 (14)C17—O11.432 (13)
C8—N11.366 (14)C17—H17A0.9700
C8—N21.395 (13)C17—H17B0.9700
C9—O21.225 (13)N1—H10.87 (7)
C9—N21.401 (14)O1—H1D0.88 (15)
C9—C101.452 (16)
C2—C1—H1A109.5N3—C11—C12119.3 (10)
C2—C1—H1B109.5C10—C11—C12118.7 (10)
H1A—C1—H1B109.5C13—C12—C11120.4 (12)
C2—C1—H1C109.5C13—C12—H12119.8
H1A—C1—H1C109.5C11—C12—H12119.8
H1B—C1—H1C109.5C12—C13—C14121.1 (12)
C7—C2—C3117.0 (11)C12—C13—H13119.5
C7—C2—C1121.4 (12)C14—C13—H13119.5
C3—C2—C1121.5 (12)C15—C14—C13119.2 (11)
C4—C3—C2121.4 (11)C15—C14—H14120.4
C4—C3—H3119.3C13—C14—H14120.4
C2—C3—H3119.3C14—C15—C10120.8 (12)
C3—C4—C5120.7 (11)C14—C15—H15119.6
C3—C4—H4119.6C10—C15—H15119.6
C5—C4—H4119.6N2—C16—C17114.5 (9)
C4—C5—C6118.7 (10)N2—C16—H16A108.6
C4—C5—N1117.2 (10)C17—C16—H16A108.6
C6—C5—N1123.9 (10)N2—C16—H16B108.6
C7—C6—C5119.6 (11)C17—C16—H16B108.6
C7—C6—H6120.2H16A—C16—H16B107.6
C5—C6—H6120.2O1—C17—C16109.8 (9)
C2—C7—C6122.4 (11)O1—C17—H17A109.7
C2—C7—H7118.8C16—C17—H17A109.7
C6—C7—H7118.8O1—C17—H17B109.7
N3—C8—N1121.1 (10)C16—C17—H17B109.7
N3—C8—N2124.4 (9)H17A—C17—H17B108.2
N1—C8—N2114.6 (9)C8—N1—C5126.3 (9)
O2—C9—N2119.7 (11)C8—N1—H1113 (9)
O2—C9—C10125.0 (10)C5—N1—H1116 (8)
N2—C9—C10115.3 (10)C8—N2—C9120.6 (9)
C11—C10—C15119.8 (11)C8—N2—C16122.7 (9)
C11—C10—C9119.4 (9)C9—N2—C16116.6 (9)
C15—C10—C9120.8 (11)C8—N3—C11118.2 (9)
N3—C11—C10121.9 (10)C17—O1—H1D113 (10)
C7—C2—C3—C41.7 (18)C13—C14—C15—C100(2)
C1—C2—C3—C4−177.7 (11)C11—C10—C15—C14−0.2 (18)
C2—C3—C4—C50.0 (18)C9—C10—C15—C14−179.5 (11)
C3—C4—C5—C6−1.8 (17)N2—C16—C17—O179.0 (12)
C3—C4—C5—N1−177.9 (10)N3—C8—N1—C54.7 (17)
C4—C5—C6—C71.8 (16)N2—C8—N1—C5−175.6 (9)
N1—C5—C6—C7177.6 (10)C4—C5—N1—C8−152.1 (11)
C3—C2—C7—C6−1.7 (18)C6—C5—N1—C832.0 (17)
C1—C2—C7—C6177.7 (11)N3—C8—N2—C93.5 (15)
C5—C6—C7—C2−0.1 (17)N1—C8—N2—C9−176.3 (9)
O2—C9—C10—C11−179.1 (10)N3—C8—N2—C16−175.9 (10)
N2—C9—C10—C112.0 (14)N1—C8—N2—C164.3 (14)
O2—C9—C10—C150.2 (17)O2—C9—N2—C8176.4 (10)
N2—C9—C10—C15−178.7 (10)C10—C9—N2—C8−4.6 (14)
C15—C10—C11—N3−177.3 (10)O2—C9—N2—C16−4.1 (15)
C9—C10—C11—N32.0 (15)C10—C9—N2—C16174.9 (9)
C15—C10—C11—C120.8 (16)C17—C16—N2—C8−84.7 (12)
C9—C10—C11—C12−179.9 (10)C17—C16—N2—C995.9 (11)
N3—C11—C12—C13177.4 (12)N1—C8—N3—C11−179.6 (9)
C10—C11—C12—C13−0.7 (18)N2—C8—N3—C110.7 (16)
C11—C12—C13—C140(2)C10—C11—N3—C8−3.4 (16)
C12—C13—C14—C150(2)C12—C11—N3—C8178.5 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1D···N3i0.88 (15)2.09 (15)2.882 (12)149 (13)
N1—H1···O10.87 (7)1.98 (8)2.806 (12)160 (12)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2827).

References

  • Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M. & Garcia-Rafanell, J. F. (1998). J. Med. Chem.41, 1869–1882. [PubMed]
  • Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.
  • Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem.42, 4705–4713. [PubMed]
  • Malamas, M. S. & Millen, J. (1991). J. Med. Chem 34, 1492–1503. [PubMed]
  • Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem.19, 381–383.
  • Matsuno, K. et al. (2002). J. Med. Chem.45, 3057–3066. [PubMed]
  • Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem.40, 1519–1529. [PubMed]
  • Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. D. (1999). Pharm. Acta Helv.74, 11–17. [PubMed]
  • Qu, Y.-N., Pan, L.-R. & Hu, Y.-G. (2008). Acta Cryst. E64, o137. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sun, Y., Zeng, G.-P. & Hu, Y.-G. (2008). Acta Cryst. E64, o311–o312. [PMC free article] [PubMed]
  • Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F., Gruber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem.44, 2719–2734. [PubMed]
  • Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem 45, 1365–1369.
  • Zeng, G., Li, Q. & Hu, Y. (2008). Acta Cryst. E64, o535. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography