PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o24.
Published online 2008 December 6. doi:  10.1107/S1600536808039214
PMCID: PMC2967943

N-(3-Bromo-1,4-dioxo-1,4-dihydro-2-naphth­yl)-2-chloro-N-(2-chloro­benzoyl)benzamide

Abstract

The title compound, C24H12BrCl2NO4, was synthesized from 2-amino-3-bromo-1,4-naphthoquinone and 2-chloro­benzoyl chloride. The crystal structure shows that each of the chloro­phenyl rings is inclined at about 60° to the naphthoquinone ring system. The two chloro­phenyl rings adopt a conformation that ensures that chlorine substituents are anti so as to reduce electronic repulsion. An examination of the packing shows close O(...)Br and Cl(...)Cl contacts of 2.947 (2) and 3.346 (1) Å, respectively. In addition, the molecules are linked by weak intermolecular C—H(...)O and C—H(...)Cl interactions.

Related literature

For similar structures, see: Lien et al. (1997 [triangle]); Huang et al. (1998 [triangle]); Bakare et al. (2003 [triangle]); Copeland et al. (2007 [triangle]); Win et al. (2005 [triangle]); Rubin-Preminger et al. (2004 [triangle]). For the properties of compounds with the chloro-1,4-naphthoquinone skeleton, see: Chang et al. (1999 [triangle]); Ertl et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o24-scheme1.jpg

Experimental

Crystal data

  • C24H12BrCl2NO4
  • M r = 529.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o24-efi1.jpg
  • a = 12.8590 (3) Å
  • b = 7.81260 (10) Å
  • c = 21.9574 (4) Å
  • β = 106.272 (2)°
  • V = 2117.53 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.23 mm−1
  • T = 200 (2) K
  • 0.46 × 0.18 × 0.15 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.945, T max = 1.000 (expected range = 0.676–0.716)
  • 27164 measured reflections
  • 8407 independent reflections
  • 4388 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.123
  • S = 0.92
  • 8407 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 2.03 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039214/bq2099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039214/bq2099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Certain compounds with the chloro-1,4-naphthoquinone skeleton were reported to exhibit antineoplastic property and some have inhibitory effects on human cytomegalovirus (HCMV) protease (Chang et al., 1999; Ertl et al., 1999). The amido and imido derivatives of 3-chloro-1,4-naphthoquinone have been reported to exhibit appreciable anti-inflammatory, antiplatelet, antiallergic and anticancer activities (Lien et al., 1997; Huang et al., 1998; Bakare et al., 2003; Copeland et al.,2007) We have developed some imido-substituted 2-chloro-1,4-naphthoquinones with cytotoxic activities on some prostate cancer cell lines. In continuation of our work, the title compound (I) was synthesized as a potential anticancer agent.

Each of the phenyl groups is inclined at about 60° to the naphthoquinone ring of the titled compound C24H12BrCl2NO4. The two chlorophenyl rings adopt a conformation that ensures that chlorine substituents are anti to each other so as to reduce electronic repulsion. An examination of the packing shows close contacts between O1A and Br at (1/2 - x, 1/2 + y, 3/2 - z) (2.947 (2) Å) and Cl1A and Cl1B at (x, 1 + y, z) (3.346 (1) Å). The explanation of these close contacts lies in a balance between the torsion angles subtended at the N which balances short intramolecular contacts against short intermolecular contacts and comes up with the best compromise.

Experimental

To a solution of 2-amino-3-bromo-1,4-naphthoquinone (300 mg, 1.21 mmol) in dry THF was added NaH (72.6 mg 3.025 mmol) and the mixture was stirred for 15 minutes. 2-Chloro-benzoylchloride (0.37 ml) was added thereafter and this mixture was stirred at room temperature for 16–24 hr under argon. The solvent was removed in vacuo and the solid residue was dissolved in dichloromethane (40 ml). The resultant solution was washed with water (3 x 15 ml), saturated NaCl solution (2 x 15 ml) and dried over anhydrous magnesium sulfate. The solvent was removed in vacuo and the residue triturated in ethyl acetate to give a yellow solid (280.0 g m). This was recrystallized in ethyl acetate to furnish the title imide (214.2 mg, 34%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.
Fig. 2.
View of the packing viewed down the a axis. Dashed bonds show weak C—H···O interactions and close Cl···Cl contacts.

Crystal data

C24H12BrCl2NO4F(000) = 1056
Mr = 529.16Dx = 1.660 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.8590 (3) ÅCell parameters from 6385 reflections
b = 7.8126 (1) Åθ = 4.5–34.8°
c = 21.9574 (4) ŵ = 2.23 mm1
β = 106.272 (2)°T = 200 K
V = 2117.53 (7) Å3Needle, pale yellow
Z = 40.46 × 0.18 × 0.15 mm

Data collection

Oxford Diffraction Gemini R diffractometer8407 independent reflections
Radiation source: fine-focus sealed tube4388 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 10.5081 pixels mm-1θmax = 34.8°, θmin = 4.5°
[var phi] and ω scansh = −19→20
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −12→12
Tmin = 0.945, Tmax = 1.000l = −34→28
27164 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.92w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3
8407 reflections(Δ/σ)max = 0.003
289 parametersΔρmax = 2.03 e Å3
0 restraintsΔρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.16560 (2)0.07777 (4)0.693146 (11)0.03453 (9)
Cl1A0.54339 (7)0.57382 (8)0.71533 (4)0.04354 (18)
Cl1B0.56864 (7)−0.14656 (8)0.60493 (4)0.04445 (19)
O1−0.05313 (17)0.1335 (4)0.60398 (10)0.0601 (7)
O20.24523 (15)0.3427 (3)0.49462 (8)0.0406 (5)
O1A0.31064 (15)0.4218 (2)0.68149 (8)0.0325 (4)
O1B0.33990 (16)−0.0028 (2)0.54700 (9)0.0389 (5)
N0.32004 (15)0.2100 (2)0.61270 (8)0.0207 (4)
C10.20724 (18)0.2157 (3)0.58269 (10)0.0207 (4)
C20.1317 (2)0.1653 (3)0.61071 (10)0.0251 (5)
C30.0139 (2)0.1748 (3)0.57732 (11)0.0298 (5)
C4−0.01873 (19)0.2343 (3)0.51068 (10)0.0239 (5)
C5−0.1271 (2)0.2365 (3)0.47668 (11)0.0290 (5)
H5A−0.18030.19630.49570.035*
C6−0.1578 (2)0.2969 (3)0.41533 (12)0.0342 (6)
H6A−0.23230.29960.39250.041*
C7−0.0814 (2)0.3536 (4)0.38673 (12)0.0367 (6)
H7A−0.10370.39550.34440.044*
C80.0275 (2)0.3495 (3)0.41937 (11)0.0333 (6)
H8A0.08000.38730.39940.040*
C90.0601 (2)0.2897 (3)0.48187 (10)0.0237 (5)
C100.1758 (2)0.2874 (3)0.51699 (10)0.0252 (5)
C1A0.36326 (19)0.3069 (3)0.66818 (10)0.0211 (4)
C2A0.47008 (19)0.2488 (3)0.71062 (10)0.0235 (5)
C3A0.5541 (2)0.3614 (3)0.73579 (11)0.0292 (5)
C4A0.6516 (2)0.3043 (4)0.77548 (12)0.0405 (7)
H4AA0.70950.38230.79140.049*
C5A0.6642 (3)0.1328 (4)0.79186 (13)0.0454 (7)
H5AA0.73090.09330.81920.054*
C6A0.5810 (3)0.0197 (4)0.76886 (12)0.0404 (7)
H6AA0.5896−0.09740.78090.048*
C7A0.4848 (2)0.0758 (3)0.72825 (11)0.0298 (5)
H7AA0.4277−0.00350.71200.036*
C1B0.38232 (19)0.1143 (3)0.57957 (11)0.0235 (5)
C2B0.49383 (19)0.1791 (3)0.58353 (10)0.0228 (5)
C3B0.5818 (2)0.0694 (3)0.59230 (11)0.0260 (5)
C4B0.6829 (2)0.1307 (3)0.59320 (12)0.0319 (6)
H4BA0.74320.05520.60070.038*
C5B0.6956 (2)0.3040 (3)0.58300 (12)0.0323 (6)
H5BA0.76480.34700.58320.039*
C6B0.6095 (2)0.4132 (3)0.57274 (12)0.0307 (5)
H6BA0.61860.53080.56460.037*
C7B0.5094 (2)0.3529 (3)0.57424 (10)0.0252 (5)
H7BA0.45050.43040.56890.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.02744 (14)0.05392 (17)0.02277 (12)−0.00532 (12)0.00791 (9)0.01052 (11)
Cl1A0.0473 (5)0.0356 (3)0.0481 (4)−0.0096 (3)0.0140 (3)−0.0032 (3)
Cl1B0.0482 (5)0.0279 (3)0.0601 (5)0.0041 (3)0.0198 (4)0.0029 (3)
O10.0209 (11)0.120 (2)0.0407 (12)−0.0055 (12)0.0117 (9)0.0258 (13)
O20.0219 (10)0.0688 (12)0.0316 (10)−0.0072 (9)0.0084 (8)0.0174 (9)
O1A0.0269 (10)0.0382 (9)0.0299 (9)0.0062 (8)0.0040 (7)−0.0080 (8)
O1B0.0308 (11)0.0415 (10)0.0461 (11)−0.0133 (9)0.0134 (8)−0.0235 (9)
N0.0144 (9)0.0301 (9)0.0175 (8)−0.0022 (8)0.0044 (7)−0.0041 (7)
C10.0158 (11)0.0288 (11)0.0170 (10)−0.0020 (9)0.0040 (8)−0.0006 (9)
C20.0196 (12)0.0373 (13)0.0190 (10)−0.0022 (10)0.0061 (9)0.0007 (9)
C30.0178 (12)0.0454 (14)0.0279 (12)−0.0019 (11)0.0090 (10)0.0050 (11)
C40.0178 (12)0.0308 (12)0.0222 (11)−0.0022 (10)0.0043 (8)−0.0022 (9)
C50.0175 (12)0.0344 (13)0.0341 (13)−0.0033 (10)0.0056 (10)−0.0015 (11)
C60.0199 (13)0.0412 (14)0.0349 (13)0.0011 (11)−0.0033 (10)−0.0042 (12)
C70.0324 (16)0.0460 (15)0.0258 (12)0.0015 (13)−0.0016 (11)0.0050 (11)
C80.0289 (15)0.0462 (14)0.0242 (12)−0.0028 (12)0.0065 (10)0.0057 (11)
C90.0216 (12)0.0282 (11)0.0195 (10)−0.0017 (10)0.0028 (8)0.0004 (9)
C100.0209 (12)0.0329 (12)0.0217 (10)−0.0036 (10)0.0062 (9)0.0003 (9)
C1A0.0212 (12)0.0238 (10)0.0179 (10)−0.0029 (9)0.0047 (8)0.0008 (8)
C2A0.0197 (12)0.0345 (12)0.0163 (9)−0.0008 (10)0.0051 (8)−0.0021 (9)
C3A0.0252 (13)0.0389 (13)0.0235 (11)−0.0071 (11)0.0068 (10)−0.0034 (10)
C4A0.0286 (15)0.0624 (18)0.0266 (13)−0.0115 (14)0.0009 (11)−0.0042 (13)
C5A0.0344 (17)0.0663 (19)0.0318 (14)0.0121 (15)0.0031 (12)0.0050 (14)
C6A0.049 (2)0.0436 (15)0.0270 (13)0.0128 (14)0.0079 (12)0.0035 (12)
C7A0.0329 (14)0.0333 (12)0.0222 (11)0.0048 (11)0.0058 (9)−0.0010 (10)
C1B0.0189 (12)0.0303 (12)0.0221 (10)0.0003 (9)0.0070 (9)−0.0014 (9)
C2B0.0200 (12)0.0318 (12)0.0165 (9)0.0000 (10)0.0051 (8)−0.0029 (9)
C3B0.0265 (13)0.0287 (11)0.0251 (11)0.0048 (11)0.0111 (9)0.0001 (10)
C4B0.0249 (14)0.0430 (14)0.0290 (12)0.0044 (11)0.0094 (10)0.0000 (11)
C5B0.0241 (14)0.0441 (14)0.0313 (13)−0.0098 (12)0.0119 (10)−0.0066 (11)
C6B0.0326 (14)0.0322 (12)0.0309 (12)−0.0063 (12)0.0148 (10)−0.0015 (11)
C7B0.0201 (12)0.0349 (12)0.0221 (11)−0.0026 (10)0.0083 (9)−0.0004 (10)

Geometric parameters (Å, °)

Br—C21.869 (2)C1A—C2A1.498 (3)
Cl1A—C3A1.715 (3)C2A—C3A1.383 (3)
Cl1B—C3B1.726 (2)C2A—C7A1.404 (3)
O1—C31.214 (3)C3A—C4A1.384 (4)
O2—C101.213 (3)C4A—C5A1.385 (4)
O1A—C1A1.209 (3)C4A—H4AA0.9500
O1B—C1B1.195 (3)C5A—C6A1.370 (5)
N—C1A1.410 (3)C5A—H5AA0.9500
N—C11.416 (3)C6A—C7A1.378 (4)
N—C1B1.434 (3)C6A—H6AA0.9500
C1—C21.346 (3)C7A—H7AA0.9500
C1—C101.494 (3)C1B—C2B1.500 (3)
C2—C31.489 (3)C2B—C3B1.389 (3)
C3—C41.479 (3)C2B—C7B1.396 (3)
C4—C51.384 (3)C3B—C4B1.381 (4)
C4—C91.405 (3)C4B—C5B1.390 (4)
C5—C61.377 (3)C4B—H4BA0.9500
C5—H5A0.9500C5B—C6B1.365 (4)
C6—C71.378 (4)C5B—H5BA0.9500
C6—H6A0.9500C6B—C7B1.380 (4)
C7—C81.383 (4)C6B—H6BA0.9500
C7—H7A0.9500C7B—H7BA0.9500
C8—C91.398 (3)H6AA—Cl1Ai2.923
C8—H8A0.9500H6BA—Cl1Bii2.805
C9—C101.471 (3)
C1A—N—C1119.32 (18)C7A—C2A—C1A119.5 (2)
C1A—N—C1B125.28 (19)C2A—C3A—C4A121.0 (3)
C1—N—C1B115.17 (17)C2A—C3A—Cl1A120.9 (2)
C2—C1—N123.7 (2)C4A—C3A—Cl1A118.0 (2)
C2—C1—C10121.1 (2)C3A—C4A—C5A119.6 (3)
N—C1—C10115.22 (18)C3A—C4A—H4AA120.2
C1—C2—C3121.7 (2)C5A—C4A—H4AA120.2
C1—C2—Br123.22 (18)C6A—C5A—C4A120.4 (3)
C3—C2—Br115.11 (16)C6A—C5A—H5AA119.8
O1—C3—C4121.2 (2)C4A—C5A—H5AA119.8
O1—C3—C2120.8 (2)C5A—C6A—C7A120.0 (3)
C4—C3—C2118.1 (2)C5A—C6A—H6AA120.0
C5—C4—C9119.8 (2)C7A—C6A—H6AA120.0
C5—C4—C3120.1 (2)C6A—C7A—C2A120.8 (3)
C9—C4—C3120.1 (2)C6A—C7A—H7AA119.6
C6—C5—C4120.1 (2)C2A—C7A—H7AA119.6
C6—C5—H5A120.0O1B—C1B—N118.5 (2)
C4—C5—H5A120.0O1B—C1B—C2B124.2 (2)
C5—C6—C7120.7 (2)N—C1B—C2B117.08 (19)
C5—C6—H6A119.7C3B—C2B—C7B118.4 (2)
C7—C6—H6A119.7C3B—C2B—C1B121.8 (2)
C6—C7—C8120.2 (2)C7B—C2B—C1B119.6 (2)
C6—C7—H7A119.9C4B—C3B—C2B121.0 (2)
C8—C7—H7A119.9C4B—C3B—Cl1B118.11 (19)
C7—C8—C9119.9 (2)C2B—C3B—Cl1B120.86 (19)
C7—C8—H8A120.1C3B—C4B—C5B119.2 (2)
C9—C8—H8A120.1C3B—C4B—H4BA120.4
C8—C9—C4119.3 (2)C5B—C4B—H4BA120.4
C8—C9—C10120.0 (2)C6B—C5B—C4B120.6 (2)
C4—C9—C10120.7 (2)C6B—C5B—H5BA119.7
O2—C10—C9122.3 (2)C4B—C5B—H5BA119.7
O2—C10—C1119.6 (2)C5B—C6B—C7B120.1 (2)
C9—C10—C1118.1 (2)C5B—C6B—H6BA119.9
O1A—C1A—N119.8 (2)C7B—C6B—H6BA119.9
O1A—C1A—C2A123.5 (2)C6B—C7B—C2B120.5 (2)
N—C1A—C2A116.47 (19)C6B—C7B—H7BA119.7
C3A—C2A—C7A118.2 (2)C2B—C7B—H7BA119.7
C3A—C2A—C1A122.3 (2)
C1A—N—C1—C2−61.2 (3)C1—N—C1A—C2A157.69 (19)
C1B—N—C1—C2124.0 (2)C1B—N—C1A—C2A−28.1 (3)
C1A—N—C1—C10117.1 (2)O1A—C1A—C2A—C3A−51.8 (3)
C1B—N—C1—C10−57.7 (3)N—C1A—C2A—C3A133.8 (2)
N—C1—C2—C3179.6 (2)O1A—C1A—C2A—C7A125.2 (2)
C10—C1—C2—C31.4 (4)N—C1A—C2A—C7A−49.3 (3)
N—C1—C2—Br−0.8 (3)C7A—C2A—C3A—C4A2.3 (4)
C10—C1—C2—Br−179.02 (17)C1A—C2A—C3A—C4A179.3 (2)
C1—C2—C3—O1−177.8 (3)C7A—C2A—C3A—Cl1A178.70 (18)
Br—C2—C3—O12.5 (4)C1A—C2A—C3A—Cl1A−4.3 (3)
C1—C2—C3—C42.8 (4)C2A—C3A—C4A—C5A−2.0 (4)
Br—C2—C3—C4−176.85 (17)Cl1A—C3A—C4A—C5A−178.5 (2)
O1—C3—C4—C5−2.9 (4)C3A—C4A—C5A—C6A0.2 (4)
C2—C3—C4—C5176.5 (2)C4A—C5A—C6A—C7A1.2 (4)
O1—C3—C4—C9176.8 (3)C5A—C6A—C7A—C2A−0.9 (4)
C2—C3—C4—C9−3.9 (4)C3A—C2A—C7A—C6A−0.9 (4)
C9—C4—C5—C6−1.7 (4)C1A—C2A—C7A—C6A−177.9 (2)
C3—C4—C5—C6177.9 (2)C1A—N—C1B—O1B156.2 (2)
C4—C5—C6—C70.9 (4)C1—N—C1B—O1B−29.3 (3)
C5—C6—C7—C80.3 (4)C1A—N—C1B—C2B−29.4 (3)
C6—C7—C8—C9−0.8 (4)C1—N—C1B—C2B145.08 (19)
C7—C8—C9—C40.0 (4)O1B—C1B—C2B—C3B−48.2 (3)
C7—C8—C9—C10−179.2 (2)N—C1B—C2B—C3B137.8 (2)
C5—C4—C9—C81.2 (4)O1B—C1B—C2B—C7B127.7 (3)
C3—C4—C9—C8−178.4 (2)N—C1B—C2B—C7B−46.3 (3)
C5—C4—C9—C10−179.6 (2)C7B—C2B—C3B—C4B1.4 (3)
C3—C4—C9—C100.8 (3)C1B—C2B—C3B—C4B177.3 (2)
C8—C9—C10—O23.2 (4)C7B—C2B—C3B—Cl1B179.26 (17)
C4—C9—C10—O2−176.0 (2)C1B—C2B—C3B—Cl1B−4.8 (3)
C8—C9—C10—C1−177.5 (2)C2B—C3B—C4B—C5B−2.2 (3)
C4—C9—C10—C13.3 (3)Cl1B—C3B—C4B—C5B179.85 (19)
C2—C1—C10—O2174.9 (2)C3B—C4B—C5B—C6B0.6 (4)
N—C1—C10—O2−3.4 (3)C4B—C5B—C6B—C7B1.9 (4)
C2—C1—C10—C9−4.4 (3)C5B—C6B—C7B—C2B−2.7 (4)
N—C1—C10—C9177.21 (19)C3B—C2B—C7B—C6B1.1 (3)
C1—N—C1A—O1A−17.0 (3)C1B—C2B—C7B—C6B−174.9 (2)
C1B—N—C1A—O1A157.3 (2)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O1Biii0.952.513.209 (3)131
C4B—H4BA···O1iv0.952.673.335 (3)128
C6B—H6BA···O2v0.952.653.296 (3)126

Symmetry codes: (iii) −x, −y, −z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2099).

References

  • Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. E11, o3165–o3170. [PubMed]
  • Chang, H. X., Chou, T. C., Savaraj, N., Liu, L. F., Yu, C. & Cheng, C. C. (1999). J. Med. Chem.E42, o405–o408.
  • Copeland, R. L., Das, J. R., Bakare, O., Enwerem, N. M., Berhe, S., Hillaire, K., White, D., Beyene, D., Kassim, O. O. & Kanaan, Y. M. (2007). Anticancer Res. E27, o1537–o1546. [PubMed]
  • Ertl, P., Cooper, D., Allen, G. & Slater, M. J. (1999). Bioorg. Med. Chem. Lett. E9, o2863–o2866.
  • Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (1998). Bioorg. Med. Chem. E6, o2261–o2269. [PubMed]
  • Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. E5, o2111–o2120. [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Rubin-Preminger, J. M., Win, T., Granot, Y. & Bittner, S. (2004). Z. Kristallogr. New Cryst. Struct.219, 323–324.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Win, T., Yerushalmi, S. & Bittner, S. (2005). Synthesis, 1631–1634.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography