PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m97–m98.
Published online 2008 December 20. doi:  10.1107/S1600536808042256
PMCID: PMC2967929

Bromido[1-(η6-4-tert-butyl­benz­yl)-3-(2,4,6-trimethyl­benz­yl)benzimidazol-2-yl­idene]chloridoruthenium(II)

Abstract

A new ruthenium complex, [RuBrCl(C28H32N2)], has been synthesized and characterized by elemental analysis, 1H NMR, 13C NMR, IR-spectroscopy and a single-crystal X-ray diffraction study. The Ru atom in this complex is best described as having a considerably distorted octa­hedral coordination environment with the arene occupying three coordination sites. Two further coordination sites are occupied by chloride and bromide ligands, while the sixth site is occupied by the carbene. The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H4C(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The two halogen atoms are disordered between Br and Cl. Two partial Cl atoms share the same sites as two partial Br atoms so that the title compound effectively has one Cl and one Br atom. C—H(...)X (X = Cl, Br) hydrogen bonds help to stabilize the crystal structure.

Related literature

For synthesis, see: Yaşar et al. (2008 [triangle]); Çetinkaya et al. (2003 [triangle]). For general background, see: Herrmann (2002 [triangle]); Arduengo & Krafczyc (1998 [triangle]); Arduengo et al. (1991 [triangle]). For related compounds, see: Begley et al. (1991 [triangle]); Arslan et al. (2004b [triangle], 2005a [triangle],b [triangle], 2007b [triangle],c [triangle]). For related literature, see: Arslan et al. (2004a [triangle], 2007a [triangle]); Herrmann et al. (1995 [triangle]); Navarro et al. (2006 [triangle]); Özdemir et al. (2001 [triangle]); Çetinkaya et al. (2001 [triangle], 2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m97-scheme1.jpg

Experimental

Crystal data

  • [RuBrCl(C28H32N2)]
  • M r = 611.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m97-efi1.jpg
  • a = 7.6336 (15) Å
  • b = 27.725 (6) Å
  • c = 12.051 (2) Å
  • β = 98.80 (3)°
  • V = 2520.5 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.29 mm−1
  • T = 153 (2) K
  • 0.26 × 0.12 × 0.02 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.581, T max = 0.955
  • 17799 measured reflections
  • 4449 independent reflections
  • 3288 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.089
  • wR(F 2) = 0.255
  • S = 1.04
  • 4449 reflections
  • 306 parameters
  • H-atom parameters constrained
  • Δρmax = 2.45 e Å−3
  • Δρmin = −1.38 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042256/at2686sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042256/at2686Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Scientific and Technological Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (BAP. 2008/03 Güdümlü) for financial support.

supplementary crystallographic information

Comment

N-Heterocyclic carbenes have received great attention since the first synthesis of a carbene compound,1,3-di-l-adamantylimidazol-2-ylidene, by Arduengo et al., (1991). N-heterocyclic carbenes generally derived from imidazolium, tetrahydropyrimidin-1-ium and benzimidazolium salts, have attracted wide spread attention as ligands for main group elements and transition metals. The N-heterocyclic carbene metal complexes are remarkably stable toward heat, air, and moisture, and many organic reactions using these complexes as catalysts have been investigated. These include Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Herrmann, 2002; Navarro et al., 2006; Arduengo & Krafczyc,1998).

Previous work from our research groups in this area has focused on the elaboration of olefins as electron-rich heterocyclic carbene precursors to allow the formation of chelating carbenes. We have also looked at the rapidly developing chemistry of η6-arene ruthenium(II) complexes containing substituted imidazolidin-2-ylidenes (Özdemir et al., 2001; Çetinkaya et al., 2001, 2002, 2003), and on synthesis, characterization, crystal structure, and using palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c, 2004a, 2004b, 2005a, 2005b).

In the present study, we have synthesized and characterized a new ruthenium complex, (1-(4-tert-butylbenzyl)-3-(2,4,6-trimethylbenzyl)-benzimidazol-2-ylidene)ruthenium(II) bromide chloride, (I). The molecular structure of the title compound, (I), is depicted in Fig. 1.

The carbene portion of the ligand is a benzimidazole ring. This ring is connected to the C6H4C(CH3)3 arene by a CH2 bridge. This leads to a system with very little apparent strain. The ruthenium atom in the title compound is best described as having an octahedral coordination environment, with the arene occupying three coordination sites. Two further coordination sites are occupied by Cl and Br ligands, while the sixth site is occupied by the carbene carbon of benzimidazole ring. The ruthenium atom is situated 1.658 (5) Å from the ring centroid of the arene atom. While there are substantial differences in the C—C and C—Ru distances for the arene ring, there is no evidence of the alternating C—C bonds observed in some ruthenium-arene complexes (Begley et al., 1991). The arene ring is essentially planar, the mean deviation from the plane being 0.013 (12) Å. In addition, the trimethylbenzyl and benzimidazole rings are almost planar with the maximum deviations of 0.009 (12) Å for atom C25 and, 0.003 (11) Å for atom C2. The benzimidazole moiety is planar and it forms dihedral angles of 87.16 (6)° and 85.31 (7)°, respectively, with the mean planes through the arene and trimethylbenzyl rings.

The two halogen atoms are disordered between Br and Cl. Two chlorine atoms share the same site as two bromine atoms so that the title compound effectively has one Cl and one Br atom. The occupancies of the Cl1 and Cl2 atoms are 0.399 (11) and 0.630 (11), respectively, and those of the Br1 and Br2 atoms are 0.601 (11) and 0.370 (11), respectively.

The structure of the title compound is assembled by intermolecular C—H···Cl hydrogen bonds, to form a two-dimensional framework (Fig. 2, 3 and Table 1) (Macrae et al., 2006). The intermolecular contacts, C—H···Br, are also listed in Table 1.

Experimental

All reactions for the preparation of (I) and (II) were carried out under Ar in flame-dried glass-ware using standard Schlenk-type flasks. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: CH2Cl2 (P4O10), hexane, toluene (Na). RuClBr[η1-CN{CH26-C6H4CMe3-4)}C6H4N(CH2C6H2Me3-2,4,6)]: A suspension of 1-(4-terbutylbenzyl)-3-(2,4,6-trimethylbenzyl)benzimidazolium bromide (1.00 g, 2.10 mmol), Cs2CO3 (0.7 g, 2.14 mmol), [RuCl2(p-cymene)]2 (0.5 g, 0.82 mmol) and molecular sieves was heated under reflux in degassed dry toluene (20 ml) for 12 h. The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (10 ml). The precipitate formed was crystallized from CH2Cl2/hexane (5:10 ml) to give the crystal product (Fig. 3). Yield 1.00 g (82%). M.p.: 339–340 oC. FT—IR (KBr pellet, cm-1): νCN 1432 cm-1. Anal. Found: C, 54.91; H, 5.29; N: 4.54. Calc. for C28H32N2RuClBr: C, 54.86; H, 5.26; N, 4.57. 1H NMR (δ, 399.9 MHz, CDCl3): 1.25, 1.31 and 1.37 [s, 9H, CH2C6H4C(CH3)3-p]; 2.17 [m, 9H, CH2C6H2(CH3)3-2,4,6]; 5.07 and 5.67 [m, 4H, CH2C6H2(CH3)3-2,4,6 and CH2C6H4C(CH3)3-p]; 6.79–7.60 [m, 10H, NC6H4 N, CH2C6H2(CH3)3-2,4,6 and CH2C6H4C(CH3)3-p]. 13C {H} NMR (δ, 100.5 MHz, CDCl3): 20.4 and 21.5 [CH2C6H2(CH3)3-2,4,6]; 31.3 [CH2C6H4C(CH3)3-p]; 34.7 [CH2C6H4C(CH3)3-p]; 45.0 [CH2C6H2(CH3)3-2,4,6]; 53.2 [CH2C6H4C(CH3)3-p]; 89.1, 90.1, 91.1, 93.0, 93.7, 98.9, 100.9, 109.7, 113.0, 113.8, 123.3, 125.3, 127.9, 129.0, 131.5, 133.4, 137.9 and 150.1 [CH2C6H2(CH3)3-2,4,6;NC6H4N and CH2C6H4C(CH3)3-p]; 184.1 [Ccarbene].

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I).
Fig. 3.
A view of the packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Fig. 4.
Preparation of the title compound.

Crystal data

[RuBrCl(C28H32N2)]F(000) = 1237.9
Mr = 611.69Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6078 reflections
a = 7.6336 (15) Åθ = 2.8–26.3°
b = 27.725 (6) ŵ = 2.29 mm1
c = 12.051 (2) ÅT = 153 K
β = 98.80 (3)°Plate, red
V = 2520.5 (9) Å30.26 × 0.12 × 0.02 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer4449 independent reflections
Radiation source: Sealed Tube3288 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.089
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = −9→9
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −30→33
Tmin = 0.581, Tmax = 0.955l = −14→14
17799 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.255H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.1351P)2 + 37.3742P] where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max < 0.001
306 parametersΔρmax = 2.45 e Å3
0 restraintsΔρmin = −1.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ru10.60457 (10)0.20821 (3)−0.00508 (7)0.0216 (3)
Cl10.72119 (18)0.23046 (5)0.19599 (11)0.0291 (6)0.399 (11)
Br10.72119 (18)0.23046 (5)0.19599 (11)0.0291 (6)0.601 (11)
Cl20.2998 (2)0.19995 (6)0.03585 (16)0.0322 (7)0.630 (11)
Br20.2998 (2)0.19995 (6)0.03585 (16)0.0322 (7)0.370 (11)
N10.6449 (10)0.2957 (3)−0.1343 (8)0.0231 (18)
N20.5256 (11)0.3219 (3)0.0063 (7)0.0247 (18)
C10.5792 (12)0.2804 (4)−0.0395 (9)0.024 (2)
C20.6346 (13)0.3450 (4)−0.1471 (9)0.027 (2)
C30.6940 (14)0.3753 (4)−0.2264 (10)0.030 (2)
H30.74960.3630−0.28680.036*
C40.6679 (14)0.4238 (4)−0.2125 (9)0.029 (2)
H40.70550.4459−0.26530.035*
C50.5879 (14)0.4421 (4)−0.1236 (10)0.029 (2)
H50.57080.4763−0.11710.035*
C60.5345 (15)0.4115 (4)−0.0466 (10)0.032 (2)
H60.48130.42410.01450.038*
C70.5573 (13)0.3620 (3)−0.0571 (9)0.024 (2)
C80.7150 (15)0.2616 (4)−0.2085 (9)0.029 (2)
H8A0.83360.2705−0.21760.035*
H8B0.64270.2616−0.28100.035*
C90.7140 (14)0.2114 (4)−0.1541 (9)0.026 (2)
C100.5597 (15)0.1828 (4)−0.1780 (10)0.030 (2)
H100.46900.1900−0.24010.036*
C110.5439 (14)0.1426 (4)−0.1061 (9)0.029 (2)
H110.43740.1237−0.11940.034*
C120.6761 (13)0.1292 (4)−0.0165 (9)0.029 (2)
C130.8302 (14)0.1597 (4)0.0012 (10)0.030 (2)
H130.92030.15240.06370.036*
C140.8585 (14)0.1996 (3)−0.0666 (9)0.025 (2)
H140.96700.2177−0.05520.030*
C150.6573 (14)0.0866 (4)0.0614 (9)0.027 (2)
C160.6828 (15)0.1024 (4)0.1864 (10)0.034 (2)
H16A0.80460.11100.21030.052*
H16B0.65110.07630.23170.052*
H16C0.60860.12970.19450.052*
C170.4716 (15)0.0640 (4)0.0349 (10)0.036 (3)
H17A0.38570.08580.05720.054*
H17B0.46930.03420.07520.054*
H17C0.44400.0579−0.04420.054*
C180.7974 (16)0.0484 (4)0.0473 (11)0.038 (3)
H18A0.78660.0392−0.03020.057*
H18B0.78000.02060.09190.057*
H18C0.91350.06140.07140.057*
C190.4525 (14)0.3223 (4)0.1144 (9)0.028 (2)
H19A0.54910.32490.17530.034*
H19B0.39410.29220.12240.034*
C200.3246 (14)0.3624 (4)0.1237 (9)0.025 (2)
C210.1591 (14)0.3634 (4)0.0541 (9)0.030 (2)
C220.0405 (13)0.4017 (4)0.0669 (9)0.027 (2)
H22−0.07360.40220.02050.032*
C230.0847 (15)0.4383 (4)0.1445 (9)0.032 (2)
C240.2486 (15)0.4370 (4)0.2112 (10)0.035 (3)
H240.28040.46270.26410.042*
C250.3703 (15)0.3996 (4)0.2046 (9)0.032 (2)
C260.1006 (16)0.3244 (4)−0.0281 (11)0.039 (3)
H26A0.13860.3318−0.09850.058*
H26B−0.02630.3220−0.03870.058*
H26C0.15170.2943−0.00010.058*
C27−0.0427 (18)0.4793 (5)0.1538 (12)0.046 (3)
H27A−0.05440.48410.23120.068*
H27B−0.15630.47160.11160.068*
H27C0.00190.50830.12440.068*
C280.5490 (16)0.4006 (4)0.2781 (10)0.037 (3)
H28A0.55850.42920.32350.055*
H28B0.64080.40060.23180.055*
H28C0.56130.37270.32580.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.0204 (5)0.0223 (5)0.0219 (5)−0.0002 (3)0.0021 (3)−0.0011 (3)
Cl10.0329 (8)0.0257 (8)0.0261 (8)0.0028 (5)−0.0035 (5)−0.0018 (5)
Br10.0329 (8)0.0257 (8)0.0261 (8)0.0028 (5)−0.0035 (5)−0.0018 (5)
Cl20.0263 (10)0.0370 (11)0.0354 (11)−0.0006 (7)0.0118 (7)0.0017 (7)
Br20.0263 (10)0.0370 (11)0.0354 (11)−0.0006 (7)0.0118 (7)0.0017 (7)
N10.016 (4)0.019 (4)0.035 (5)0.000 (3)0.007 (3)0.007 (3)
N20.026 (4)0.025 (5)0.023 (4)0.009 (3)0.001 (3)−0.001 (3)
C10.017 (4)0.030 (5)0.024 (5)−0.006 (4)0.002 (4)−0.001 (4)
C20.023 (5)0.027 (5)0.031 (6)0.000 (4)0.005 (4)0.003 (4)
C30.029 (5)0.031 (6)0.033 (6)−0.002 (4)0.011 (5)0.006 (4)
C40.031 (5)0.034 (6)0.023 (5)−0.002 (4)0.009 (4)0.004 (4)
C50.029 (5)0.016 (5)0.040 (6)0.001 (4)0.001 (5)0.005 (4)
C60.035 (6)0.029 (6)0.034 (6)0.008 (4)0.016 (5)0.005 (5)
C70.023 (5)0.019 (5)0.031 (5)0.007 (4)0.011 (4)0.009 (4)
C80.042 (6)0.027 (5)0.021 (5)−0.001 (4)0.009 (4)0.000 (4)
C90.030 (5)0.025 (5)0.025 (5)−0.002 (4)0.014 (4)0.001 (4)
C100.035 (6)0.025 (5)0.033 (6)−0.004 (4)0.013 (5)−0.012 (4)
C110.030 (5)0.022 (5)0.033 (6)0.004 (4)0.004 (4)−0.012 (4)
C120.023 (5)0.032 (6)0.032 (6)−0.007 (4)0.010 (4)−0.001 (4)
C130.025 (5)0.031 (6)0.037 (6)0.004 (4)0.010 (4)−0.002 (5)
C140.036 (6)0.017 (5)0.026 (5)0.002 (4)0.021 (4)−0.001 (4)
C150.029 (5)0.027 (5)0.024 (5)0.001 (4)0.001 (4)0.000 (4)
C160.034 (6)0.036 (6)0.033 (6)−0.006 (5)0.004 (5)0.006 (5)
C170.033 (6)0.029 (6)0.042 (7)−0.012 (4)−0.004 (5)0.010 (5)
C180.045 (7)0.024 (6)0.045 (7)0.002 (5)0.005 (5)−0.001 (5)
C190.026 (5)0.035 (6)0.025 (5)0.004 (4)0.004 (4)0.001 (4)
C200.034 (5)0.022 (5)0.021 (5)−0.004 (4)0.004 (4)−0.002 (4)
C210.027 (5)0.034 (6)0.028 (6)−0.007 (4)−0.001 (4)0.001 (4)
C220.021 (5)0.029 (5)0.031 (6)0.003 (4)0.002 (4)0.001 (4)
C230.036 (6)0.029 (6)0.031 (6)0.006 (5)0.010 (5)−0.005 (5)
C240.038 (6)0.028 (6)0.040 (7)−0.006 (5)0.012 (5)−0.013 (5)
C250.036 (6)0.036 (6)0.022 (5)−0.005 (5)0.004 (4)−0.001 (4)
C260.032 (6)0.033 (6)0.046 (7)0.009 (5)−0.012 (5)−0.015 (5)
C270.053 (8)0.034 (7)0.051 (8)0.017 (6)0.011 (6)−0.004 (6)
C280.038 (6)0.037 (6)0.035 (6)−0.007 (5)0.005 (5)−0.011 (5)

Geometric parameters (Å, °)

Ru1—C12.048 (11)C13—H130.9600
Ru1—C92.095 (10)C14—H140.9600
Ru1—C102.177 (11)C15—C181.533 (15)
Ru1—C132.177 (10)C15—C171.538 (14)
Ru1—C142.192 (10)C15—C161.553 (15)
Ru1—C112.198 (10)C16—H16A0.9599
Ru1—C122.267 (11)C16—H16B0.9599
Ru1—Cl22.4613 (18)C16—H16C0.9599
Ru1—Cl12.5267 (17)C17—H17A0.9599
N1—C21.376 (13)C17—H17B0.9599
N1—C11.383 (13)C17—H17C0.9599
N1—C81.457 (13)C18—H18A0.9599
N2—C11.366 (13)C18—H18B0.9599
N2—C71.390 (13)C18—H18C0.9599
N2—C191.494 (13)C19—C201.495 (14)
C2—C71.394 (15)C19—H19A0.9600
C2—C31.399 (15)C19—H19B0.9600
C3—C41.372 (16)C20—C211.405 (15)
C3—H30.9600C20—C251.425 (15)
C4—C51.407 (15)C21—C221.418 (15)
C4—H40.9600C21—C261.489 (15)
C5—C61.365 (15)C22—C231.387 (15)
C5—H50.9600C22—H220.9600
C6—C71.392 (15)C23—C241.380 (16)
C6—H60.9600C23—C271.511 (15)
C8—C91.540 (14)C24—C251.404 (16)
C8—H8A0.9600C24—H240.9600
C8—H8B0.9600C25—C281.509 (16)
C9—C101.414 (15)C26—H26A0.9599
C9—C141.442 (16)C26—H26B0.9599
C10—C111.427 (16)C26—H26C0.9599
C10—H100.9600C27—H27A0.9599
C11—C121.410 (15)C27—H27B0.9599
C11—H110.9600C27—H27C0.9599
C12—C131.438 (14)C28—H28A0.9599
C12—C151.529 (14)C28—H28B0.9599
C13—C141.411 (14)C28—H28C0.9599
C1—Ru1—C979.8 (4)Ru1—C11—H11130.2
C1—Ru1—C1097.3 (4)C11—C12—C13115.6 (10)
C9—Ru1—C1038.6 (4)C11—C12—C15123.4 (9)
C1—Ru1—C13131.3 (4)C13—C12—C15121.0 (10)
C9—Ru1—C1368.8 (4)C11—C12—Ru168.9 (6)
C10—Ru1—C1380.9 (4)C13—C12—Ru167.8 (6)
C1—Ru1—C1495.7 (4)C15—C12—Ru1131.5 (7)
C9—Ru1—C1439.2 (4)C14—C13—C12124.7 (11)
C10—Ru1—C1470.0 (4)C14—C13—Ru171.7 (6)
C13—Ru1—C1437.7 (4)C12—C13—Ru174.6 (6)
C1—Ru1—C11133.7 (4)C14—C13—H13117.7
C9—Ru1—C1168.8 (4)C12—C13—H13117.7
C10—Ru1—C1138.1 (4)Ru1—C13—H13128.7
C13—Ru1—C1166.9 (4)C13—C14—C9115.7 (9)
C14—Ru1—C1181.1 (4)C13—C14—Ru170.6 (6)
C1—Ru1—C12161.6 (4)C9—C14—Ru166.8 (6)
C9—Ru1—C1281.8 (4)C13—C14—H14122.1
C10—Ru1—C1268.5 (4)C9—C14—H14122.1
C13—Ru1—C1237.7 (4)Ru1—C14—H14133.1
C14—Ru1—C1268.9 (3)C12—C15—C18109.5 (9)
C11—Ru1—C1236.8 (4)C12—C15—C17110.9 (9)
C1—Ru1—Cl293.9 (3)C18—C15—C17109.4 (9)
C9—Ru1—Cl2133.5 (3)C12—C15—C16111.6 (9)
C10—Ru1—Cl298.4 (3)C18—C15—C16108.5 (9)
C13—Ru1—Cl2134.6 (3)C17—C15—C16106.9 (9)
C14—Ru1—Cl2165.8 (3)C15—C16—H16A109.5
C11—Ru1—Cl284.7 (3)C15—C16—H16B109.5
C12—Ru1—Cl299.6 (3)H16A—C16—H16B109.5
C1—Ru1—Cl187.9 (3)C15—C16—H16C109.5
C9—Ru1—Cl1133.1 (3)H16A—C16—H16C109.5
C10—Ru1—Cl1167.9 (3)H16B—C16—H16C109.5
C13—Ru1—Cl187.5 (3)C15—C17—H17A109.5
C14—Ru1—Cl198.7 (3)C15—C17—H17B109.5
C11—Ru1—Cl1138.3 (3)H17A—C17—H17B109.5
C12—Ru1—Cl1104.0 (3)C15—C17—H17C109.5
Cl2—Ru1—Cl192.04 (7)H17A—C17—H17C109.5
C2—N1—C1112.0 (9)H17B—C17—H17C109.5
C2—N1—C8126.5 (9)C15—C18—H18A109.5
C1—N1—C8121.5 (8)C15—C18—H18B109.5
C1—N2—C7111.3 (8)H18A—C18—H18B109.5
C1—N2—C19122.3 (9)C15—C18—H18C109.5
C7—N2—C19126.4 (8)H18A—C18—H18C109.5
N2—C1—N1104.2 (9)H18B—C18—H18C109.5
N2—C1—Ru1140.1 (8)N2—C19—C20114.0 (8)
N1—C1—Ru1115.6 (7)N2—C19—H19A108.8
N1—C2—C7105.8 (9)C20—C19—H19A108.8
N1—C2—C3130.9 (10)N2—C19—H19B108.8
C7—C2—C3123.3 (10)C20—C19—H19B108.8
C4—C3—C2115.9 (10)H19A—C19—H19B107.7
C4—C3—H3122.1C21—C20—C25119.8 (10)
C2—C3—H3122.1C21—C20—C19120.5 (9)
C3—C4—C5122.4 (10)C25—C20—C19119.6 (10)
C3—C4—H4118.8C20—C21—C22118.7 (10)
C5—C4—H4118.8C20—C21—C26122.2 (10)
C6—C5—C4120.1 (10)C22—C21—C26118.9 (9)
C6—C5—H5119.9C23—C22—C21121.8 (10)
C4—C5—H5119.9C23—C22—H22119.1
C5—C6—C7119.8 (10)C21—C22—H22119.1
C5—C6—H6120.1C24—C23—C22118.7 (10)
C7—C6—H6120.1C24—C23—C27120.8 (11)
N2—C7—C6134.7 (10)C22—C23—C27120.5 (11)
N2—C7—C2106.7 (8)C23—C24—C25122.3 (10)
C6—C7—C2118.5 (9)C23—C24—H24118.8
N1—C8—C9107.4 (8)C25—C24—H24118.8
N1—C8—H8A110.2C24—C25—C20118.6 (10)
C9—C8—H8A110.2C24—C25—C28120.0 (10)
N1—C8—H8B110.2C20—C25—C28121.3 (10)
C9—C8—H8B110.2C21—C26—H26A109.5
H8A—C8—H8B108.5C21—C26—H26B109.5
C10—C9—C14122.8 (9)H26A—C26—H26B109.5
C10—C9—C8118.7 (10)C21—C26—H26C109.5
C14—C9—C8117.6 (9)H26A—C26—H26C109.5
C10—C9—Ru173.8 (6)H26B—C26—H26C109.5
C14—C9—Ru174.0 (6)C23—C27—H27A109.5
C8—C9—Ru1115.6 (7)C23—C27—H27B109.5
C9—C10—C11117.3 (11)H27A—C27—H27B109.5
C9—C10—Ru167.6 (6)C23—C27—H27C109.5
C11—C10—Ru171.8 (6)H27A—C27—H27C109.5
C9—C10—H10121.3H27B—C27—H27C109.5
C11—C10—H10121.3C25—C28—H28A109.5
Ru1—C10—H10131.9C25—C28—H28B109.5
C12—C11—C10123.6 (10)H28A—C28—H28B109.5
C12—C11—Ru174.3 (6)C25—C28—H28C109.5
C10—C11—Ru170.2 (6)H28A—C28—H28C109.5
C12—C11—H11118.2H28B—C28—H28C109.5
C10—C11—H11118.2
C7—N2—C1—N1−0.3 (11)C14—Ru1—C11—C10−68.9 (6)
C19—N2—C1—N1−177.2 (8)C12—Ru1—C11—C10−135.5 (9)
C7—N2—C1—Ru1174.3 (9)Cl2—Ru1—C11—C10110.8 (6)
C19—N2—C1—Ru1−2.5 (16)Cl1—Ru1—C11—C10−162.0 (5)
C2—N1—C1—N20.6 (11)C10—C11—C12—C131.7 (15)
C8—N1—C1—N2−179.5 (9)Ru1—C11—C12—C13−50.7 (8)
C2—N1—C1—Ru1−175.6 (7)C10—C11—C12—C15179.1 (9)
C8—N1—C1—Ru14.4 (12)Ru1—C11—C12—C15126.7 (10)
C9—Ru1—C1—N2−175.8 (12)C10—C11—C12—Ru152.4 (9)
C10—Ru1—C1—N2149.7 (11)C1—Ru1—C12—C11−68.9 (13)
C13—Ru1—C1—N2−126.1 (11)C9—Ru1—C12—C11−65.3 (7)
C14—Ru1—C1—N2−139.8 (11)C10—Ru1—C12—C11−27.7 (6)
C11—Ru1—C1—N2137.2 (10)C13—Ru1—C12—C11−131.1 (9)
C12—Ru1—C1—N2−172.2 (10)C14—Ru1—C12—C11−103.7 (7)
Cl2—Ru1—C1—N250.7 (11)Cl2—Ru1—C12—C1167.7 (6)
Cl1—Ru1—C1—N2−41.3 (11)Cl1—Ru1—C12—C11162.2 (6)
C9—Ru1—C1—N1−1.6 (7)C1—Ru1—C12—C1362.2 (14)
C10—Ru1—C1—N1−36.1 (8)C9—Ru1—C12—C1365.8 (7)
C13—Ru1—C1—N148.1 (9)C10—Ru1—C12—C13103.4 (7)
C14—Ru1—C1—N134.4 (8)C14—Ru1—C12—C1327.3 (6)
C11—Ru1—C1—N1−48.6 (9)C11—Ru1—C12—C13131.1 (9)
C12—Ru1—C1—N12.0 (16)Cl2—Ru1—C12—C13−161.3 (6)
Cl2—Ru1—C1—N1−135.1 (7)Cl1—Ru1—C12—C13−66.7 (6)
Cl1—Ru1—C1—N1133.0 (7)C1—Ru1—C12—C15174.6 (10)
C1—N1—C2—C7−0.6 (11)C9—Ru1—C12—C15178.2 (10)
C8—N1—C2—C7179.4 (9)C10—Ru1—C12—C15−144.2 (10)
C1—N1—C2—C3176.0 (11)C13—Ru1—C12—C15112.4 (12)
C8—N1—C2—C3−3.9 (18)C14—Ru1—C12—C15139.7 (10)
N1—C2—C3—C4−177.7 (11)C11—Ru1—C12—C15−116.5 (12)
C7—C2—C3—C4−1.6 (16)Cl2—Ru1—C12—C15−48.9 (9)
C2—C3—C4—C50.6 (16)Cl1—Ru1—C12—C1545.7 (10)
C3—C4—C5—C60.6 (17)C11—C12—C13—C14−2.8 (15)
C4—C5—C6—C7−0.8 (17)C15—C12—C13—C14179.8 (9)
C1—N2—C7—C6−177.5 (12)Ru1—C12—C13—C14−54.0 (9)
C19—N2—C7—C6−0.8 (19)C11—C12—C13—Ru151.2 (8)
C1—N2—C7—C20.0 (11)C15—C12—C13—Ru1−126.2 (9)
C19—N2—C7—C2176.6 (9)C1—Ru1—C13—C14−22.6 (9)
C5—C6—C7—N2177.1 (11)C9—Ru1—C13—C1430.9 (6)
C5—C6—C7—C2−0.1 (16)C10—Ru1—C13—C1469.1 (7)
N1—C2—C7—N20.4 (11)C11—Ru1—C13—C14106.1 (7)
C3—C2—C7—N2−176.5 (10)C12—Ru1—C13—C14135.5 (10)
N1—C2—C7—C6178.3 (10)Cl2—Ru1—C13—C14161.9 (5)
C3—C2—C7—C61.4 (16)Cl1—Ru1—C13—C14−107.7 (6)
C2—N1—C8—C9175.0 (9)C1—Ru1—C13—C12−158.1 (6)
C1—N1—C8—C9−4.9 (13)C9—Ru1—C13—C12−104.6 (7)
N1—C8—C9—C1088.1 (11)C10—Ru1—C13—C12−66.4 (7)
N1—C8—C9—C14−81.3 (11)C14—Ru1—C13—C12−135.5 (10)
N1—C8—C9—Ru13.3 (11)C11—Ru1—C13—C12−29.4 (6)
C1—Ru1—C9—C10−115.6 (7)Cl2—Ru1—C13—C1226.4 (8)
C13—Ru1—C9—C10102.2 (7)Cl1—Ru1—C13—C12116.8 (6)
C14—Ru1—C9—C10132.1 (9)C12—C13—C14—C94.6 (15)
C11—Ru1—C9—C1029.8 (6)Ru1—C13—C14—C9−50.7 (8)
C12—Ru1—C9—C1065.5 (7)C12—C13—C14—Ru155.2 (9)
Cl2—Ru1—C9—C10−29.9 (8)C10—C9—C14—C13−5.5 (14)
Cl1—Ru1—C9—C10167.0 (5)C8—C9—C14—C13163.5 (9)
C1—Ru1—C9—C14112.3 (6)Ru1—C9—C14—C1352.6 (8)
C10—Ru1—C9—C14−132.1 (9)C10—C9—C14—Ru1−58.0 (9)
C13—Ru1—C9—C14−29.8 (6)C8—C9—C14—Ru1110.9 (9)
C11—Ru1—C9—C14−102.2 (6)C1—Ru1—C14—C13163.1 (7)
C12—Ru1—C9—C14−66.5 (6)C9—Ru1—C14—C13−130.7 (9)
Cl2—Ru1—C9—C14−162.0 (4)C10—Ru1—C14—C13−101.2 (7)
Cl1—Ru1—C9—C1435.0 (7)C11—Ru1—C14—C13−63.4 (7)
C1—Ru1—C9—C8−1.1 (8)C12—Ru1—C14—C13−27.3 (6)
C10—Ru1—C9—C8114.5 (11)Cl2—Ru1—C14—C13−64.4 (14)
C13—Ru1—C9—C8−143.3 (9)Cl1—Ru1—C14—C1374.4 (6)
C14—Ru1—C9—C8−113.4 (10)C1—Ru1—C14—C9−66.2 (6)
C11—Ru1—C9—C8144.3 (9)C10—Ru1—C14—C929.5 (6)
C12—Ru1—C9—C8−180.0 (8)C13—Ru1—C14—C9130.7 (9)
Cl2—Ru1—C9—C884.6 (8)C11—Ru1—C14—C967.3 (6)
Cl1—Ru1—C9—C8−78.5 (9)C12—Ru1—C14—C9103.3 (6)
C14—C9—C10—C114.6 (15)Cl2—Ru1—C14—C966.3 (13)
C8—C9—C10—C11−164.3 (9)Cl1—Ru1—C14—C9−155.0 (5)
Ru1—C9—C10—C11−53.5 (8)C11—C12—C15—C18115.9 (11)
C14—C9—C10—Ru158.1 (9)C13—C12—C15—C18−66.9 (13)
C8—C9—C10—Ru1−110.7 (9)Ru1—C12—C15—C18−153.6 (8)
C1—Ru1—C10—C963.5 (7)C11—C12—C15—C17−4.9 (15)
C13—Ru1—C10—C9−67.4 (7)C13—C12—C15—C17172.3 (10)
C14—Ru1—C10—C9−30.0 (6)Ru1—C12—C15—C1785.6 (11)
C11—Ru1—C10—C9−131.2 (9)C11—C12—C15—C16−124.0 (11)
C12—Ru1—C10—C9−104.4 (7)C13—C12—C15—C1653.2 (13)
Cl2—Ru1—C10—C9158.6 (6)Ru1—C12—C15—C16−33.5 (13)
Cl1—Ru1—C10—C9−51.6 (17)C1—N2—C19—C20−151.5 (9)
C1—Ru1—C10—C11−165.3 (6)C7—N2—C19—C2032.1 (14)
C9—Ru1—C10—C11131.2 (9)N2—C19—C20—C2167.2 (13)
C13—Ru1—C10—C1163.9 (6)N2—C19—C20—C25−113.5 (11)
C14—Ru1—C10—C11101.3 (7)C25—C20—C21—C22−0.3 (15)
C12—Ru1—C10—C1126.8 (6)C19—C20—C21—C22179.0 (9)
Cl2—Ru1—C10—C11−70.2 (6)C25—C20—C21—C26−177.0 (11)
Cl1—Ru1—C10—C1179.6 (15)C19—C20—C21—C262.3 (16)
C9—C10—C11—C12−2.7 (15)C20—C21—C22—C231.1 (16)
Ru1—C10—C11—C12−54.1 (9)C26—C21—C22—C23177.9 (11)
C9—C10—C11—Ru151.5 (8)C21—C22—C23—C24−0.4 (17)
C1—Ru1—C11—C12155.9 (6)C21—C22—C23—C27178.3 (11)
C9—Ru1—C11—C12105.3 (7)C22—C23—C24—C25−1.2 (17)
C10—Ru1—C11—C12135.5 (9)C27—C23—C24—C25−179.8 (11)
C13—Ru1—C11—C1230.1 (6)C23—C24—C25—C201.9 (17)
C14—Ru1—C11—C1266.6 (6)C23—C24—C25—C28178.8 (11)
Cl2—Ru1—C11—C12−113.7 (6)C21—C20—C25—C24−1.1 (16)
Cl1—Ru1—C11—C12−26.5 (8)C19—C20—C25—C24179.6 (10)
C1—Ru1—C11—C1020.4 (9)C21—C20—C25—C28−178.0 (10)
C9—Ru1—C11—C10−30.2 (6)C19—C20—C25—C282.7 (15)
C13—Ru1—C11—C10−105.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14···Cl2i0.962.653.406 (11)135
C16—H16C···Br10.962.923.563 (11)125
C19—H19A···Br10.962.923.323 (11)106

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2686).

References

  • Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc.113, 361–363.
  • Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg.32, 6–14.
  • Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2004b). Z. Kristallogr. New Cryst. Struct.219, 377–378.
  • Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr.35, 491–495.
  • Arslan, H., VanDerveer, D., Özdemir, I., Çetinkaya, B. & Yaşar, S. (2004a). Z. Kristallogr. New Cryst. Struct.219, 44–46.
  • Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.
  • Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873–m1875.
  • Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.
  • Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.
  • Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320.
  • Çetinkaya, B., Demir, S., Özdemir, I., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2001). New J. Chem.25, 519–521.
  • Çetinkaya, B., Demir, S., Özdemir, İ., Toupet, L., Semeril, D., Bruneau, C. & Dixneuf, P. H. (2003). Chem. Eur. J.9, 2323–2330. [PubMed]
  • Çetinkaya, B., Seckin, T., Gürbüz, N. & Özdemir, I. (2002). J. Mol. Catal. A, 184, 31–38.
  • Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309. [PubMed]
  • Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl.34, 2371–2374.
  • Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem.71, 685–692. [PubMed]
  • Özdemir, I., Yigit, B., Çetinkaya, B., Ülkü, D., Tahir, M. N. & Arici, C. (2001). J. Organomet. Chem.633, 27–32.
  • Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem.12, 2142–2149.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography