PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m96.
Published online 2008 December 17. doi:  10.1107/S1600536808042244
PMCID: PMC2967928

Bis(η7-cyclo­hepta­trien­yl)tri-μ-hydrido-dimolybdenum(0,I)

Abstract

In the title compound, [Mo27-C7H7)2(μ-H)3], which displays crystallographic mirror symmetry, two (η7-C7H7)Mo units are linked along the Mo—Mo axis by three bridging hydride ligands. The Mo—Mo distance is 2.5732 (4) Å. The perpendicular distances of the Mo atoms from the C7 planes are 1.5827 (8) and 1.5814 (8) Å, with individual Mo—C bond lengths in the range 2.261 (2)–2.2789 (14) Å. Mo—H distances range from 1.77 (3) to 1.85 (4) Å, with Mo—H—Mo angles of 89 (2) and 92 (1)°.

Related literature

For related literature, see: Alvarez et al. (2006 [triangle]); Darensbourg et al. (1980 [triangle]); Jones et al. (1980 [triangle]); Lin et al. (1993 [triangle]); Süss-Fink & Therrien (2007 [triangle]); Petersen et al. (1981 [triangle]); Shima & Suzuki (2005 [triangle]); Tamm et al. (2004 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m96-scheme1.jpg

Experimental

Crystal data

  • [Mo2(C7H7)2H3]
  • M r = 377.16
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m96-efi1.jpg
  • a = 17.844 (2) Å
  • b = 11.3036 (16) Å
  • c = 6.2981 (8) Å
  • V = 1270.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.94 mm−1
  • T = 133 (2) K
  • 0.38 × 0.20 × 0.04 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.526, T max = 0.926
  • 25354 measured reflections
  • 2023 independent reflections
  • 1871 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015
  • wR(F 2) = 0.041
  • S = 1.06
  • 2023 reflections
  • 86 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042244/bt2832sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042244/bt2832Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Significant recent attention has been paid to dinuclear trihydrido complexes, which tend to be soluble in both polar organic solvents and water and thus have potential applications in aqueous organometallic chemistry. A useful synthesis of such complexes is reaction of the corresponding aquo complexes with sodium borohydride in water. Here we report the formation of the title compound through the reaction of the corresponding triacetonitrile complex of molybdenum with sodium borohydride in acetonitrile. The same reaction, but in the presence of tricyclohexylphosphane, affords a tetrahydroborate complex (Tamm et al., 2006). Most dinuclear tri- and polyhydrido complexes contain either two cyclopentadienyl rings or two arene rings (Shima et al., 2005; Süss-Fink et al., 2007), and this is thus the first synthesis of a dinuclear trihydrido complex that contains two cycloheptatrienyl rings. If these rings are formally assigned the charge +1, corresponding to an aromatic π system, then the metal oxidation states are mixed (0,I). Related structural motifs have been observed for halide-bridged dimolybdenum complexes (Tamm et al., 2004).

The X-ray structure analysis of the title compound reveals two (η7-C7H7)Mo units linked by three bridging hydrido ligands. The molecule possesses a crystallographic mirror plane passing through both molybdenum atoms, the atoms C1 and H1 of the cycloheptatrienyl ligands, and the hydride H10. The perpendicular distances of the Mo atoms from the C7 planes are 1.5827 (8) Å for Mo1 and 1.5814 (8) Å for Mo2, with individual Mo—C bond lengths in the range 2.261 (2) – 2.2789 (14) Å. The two C7 planes (r.m.s. deviation 0.005, 0.008 Å) are almost parallel, with an interplanar angle of 1.59 (7) Å. The molecular axis, defined as the sequence (Centroid ring 1)—Mo1—Mo2—(Centroid ring 2), is essentially linear, with Cent—Mo—Mo angles of 179°. The Mo—H—Mo bonds can be described as three-centre, two-electron (3c-2 e) bonds, with Mo—H distances between 1.77 (3) and 1.85 (4) Å.

The Mo—Mo bond length of 2.5732 (4) Å is, as expected, shorter than the Mo—Mo bonds in monohydrido (Mo—H—Mo) complexes, where this distance lies in the range 3.4056 (5)–3.540 (1) Å (Petersen et al., 1981; Darensbourg et al., 1980; Lin et al., 1993). The monohydrido complex [Mo25-C5H5)2(µ-H)(SnPh3)(CO)2(PCy2H)] reported by Alvarez et al. (2006) contains a formal Mo[equivalent]Mo bond with a length (2.5730 (6) Å) almost identical to that in the title complex. There is only one report of a dihydrido complex with a quadruply bonded Mo—Mo (2.194 (3) Å) unit (Jones et al., 1980).

Experimental

0.1324 g NaBH4 (0.44 mmol) was suspended in ethanol and cooled to 0 °C. A solution of [(η7-C7H7)Mo(NCMe)3]PF6 (0.1324 g, 3.50 mmol) in acetonitile was added to this suspension. The mixture was stirred at room temperature for several hours. After removal of the solvent and subsequently drying under high vacuum the residue was extracted with hexane/diethyl ether (1:2). Single crystals of the title compound were obtained by cooling of this solution.

Refinement

The bridging H atoms were identified in difference syntheses and freely refined. Other (aromatic) hydrogen atoms were included using a riding model with C—H 0.95 Å and U(H) values fixed at 1.2Uiso(C) of the parent C atom.

Figures

Fig. 1.
The formula unit of the title compound in the crystal. Ellipsoids represent 50% probability levels.

Crystal data

[Mo2(C7H7)2H3]Dx = 1.972 Mg m3
Mr = 377.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 7837 reflections
a = 17.844 (2) Åθ = 2.3–30.5°
b = 11.3036 (16) ŵ = 1.94 mm1
c = 6.2981 (8) ÅT = 133 K
V = 1270.3 (3) Å3Tablet, green
Z = 40.38 × 0.20 × 0.04 mm
F(000) = 740

Data collection

Bruker SMART 1000 CCD diffractometer2023 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 8.192 pixels mm-1θmax = 30.5°, θmin = 2.3°
ω and [var phi] scansh = −25→25
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −16→15
Tmin = 0.526, Tmax = 0.926l = −8→8
25354 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0195P)2 + 1.0664P] where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.138195 (8)0.25000.59745 (3)0.01163 (5)
Mo20.007079 (8)0.25000.42733 (3)0.01206 (5)
C10.17862 (12)0.25000.9377 (4)0.0280 (5)
H10.15480.25001.07250.034*
C20.19390 (8)0.13719 (15)0.8514 (3)0.0261 (3)
H20.18040.07150.93740.031*
C30.22664 (8)0.10988 (14)0.6537 (3)0.0247 (3)
H30.23090.02800.62220.030*
C40.25402 (8)0.18763 (15)0.4960 (3)0.0231 (3)
H40.27520.15110.37410.028*
C5−0.11081 (11)0.25000.5604 (4)0.0225 (4)
H5−0.13180.25000.69910.027*
C6−0.09750 (8)0.13700 (14)0.4723 (3)0.0234 (3)
H6−0.11210.07140.55690.028*
C7−0.06509 (8)0.10969 (13)0.2738 (3)0.0233 (3)
H7−0.05890.02780.24490.028*
C8−0.04060 (8)0.18731 (14)0.1119 (2)0.0225 (3)
H8−0.02170.1507−0.01290.027*
H90.0858 (14)0.155 (2)0.421 (4)0.058 (8)*
H100.041 (2)0.25000.700 (6)0.061 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.00941 (7)0.01301 (8)0.01246 (8)0.000−0.00047 (5)0.000
Mo20.00958 (7)0.01379 (8)0.01280 (8)0.000−0.00056 (5)0.000
C10.0166 (9)0.0542 (16)0.0133 (10)0.000−0.0030 (7)0.000
C20.0178 (6)0.0309 (8)0.0296 (8)−0.0025 (6)−0.0072 (6)0.0149 (7)
C30.0157 (6)0.0181 (6)0.0403 (9)0.0047 (5)−0.0071 (6)−0.0001 (6)
C40.0119 (6)0.0330 (8)0.0243 (8)0.0045 (5)0.0004 (5)−0.0074 (6)
C50.0123 (8)0.0354 (12)0.0199 (10)0.0000.0017 (7)0.000
C60.0141 (6)0.0272 (7)0.0289 (8)−0.0070 (5)−0.0019 (5)0.0059 (6)
C70.0184 (6)0.0204 (6)0.0313 (8)−0.0036 (5)−0.0070 (6)−0.0044 (6)
C80.0188 (6)0.0307 (8)0.0181 (7)0.0004 (6)−0.0045 (5)−0.0067 (6)

Geometric parameters (Å, °)

Mo1—C12.261 (2)C1—C21.413 (2)
Mo1—C3i2.2638 (14)C1—C2i1.413 (2)
Mo1—C32.2638 (14)C1—H10.9500
Mo1—C2i2.2740 (15)C2—C31.409 (2)
Mo1—C22.2740 (15)C2—H20.9500
Mo1—C4i2.2753 (14)C3—C41.414 (2)
Mo1—C42.2753 (14)C3—H30.9500
Mo1—Mo22.5732 (4)C4—C4i1.410 (3)
Mo1—H91.81 (3)C4—H40.9500
Mo1—H101.85 (4)C5—C61.4128 (19)
Mo2—C72.2603 (14)C5—C6i1.4128 (19)
Mo2—C7i2.2603 (14)C5—H50.9500
Mo2—C52.264 (2)C6—C71.412 (2)
Mo2—C82.2742 (15)C6—H60.9500
Mo2—C8i2.2742 (15)C7—C81.414 (2)
Mo2—C62.2789 (14)C7—H70.9500
Mo2—C6i2.2789 (14)C8—C8i1.417 (3)
Mo2—H91.77 (3)C8—H80.9500
Mo2—H101.82 (4)
C1—Mo1—C3i68.24 (6)C8i—Mo2—Mo1134.73 (4)
C1—Mo1—C368.24 (6)C6—Mo2—Mo1133.85 (4)
C3i—Mo1—C388.79 (8)C6i—Mo2—Mo1133.85 (4)
C1—Mo1—C2i36.30 (5)C7—Mo2—H990.9 (8)
C3i—Mo1—C2i36.19 (6)C7i—Mo2—H9150.4 (8)
C3—Mo1—C2i88.71 (6)C5—Mo2—H9138.2 (9)
C1—Mo1—C236.30 (5)C8—Mo2—H995.0 (8)
C3i—Mo1—C288.71 (6)C8i—Mo2—H9117.8 (8)
C3—Mo1—C236.19 (6)C6—Mo2—H9108.1 (9)
C2i—Mo1—C268.21 (9)C6i—Mo2—H9173.4 (8)
C1—Mo1—C4i88.65 (7)Mo1—Mo2—H944.6 (8)
C3i—Mo1—C4i36.29 (6)C7—Mo2—H10126.4 (6)
C3—Mo1—C4i68.13 (6)C7i—Mo2—H10126.4 (6)
C2i—Mo1—C4i68.09 (6)C5—Mo2—H1087.8 (12)
C2—Mo1—C4i88.53 (6)C8—Mo2—H10161.5 (2)
C1—Mo1—C488.65 (7)C8i—Mo2—H10161.5 (2)
C3i—Mo1—C468.13 (6)C6—Mo2—H1099.0 (10)
C3—Mo1—C436.29 (6)C6i—Mo2—H1099.0 (10)
C2i—Mo1—C488.53 (6)Mo1—Mo2—H1045.9 (12)
C2—Mo1—C468.09 (6)H9—Mo2—H1075.9 (12)
C4i—Mo1—C436.10 (8)C2—C1—C2i129.0 (2)
C1—Mo1—Mo2133.21 (6)C2—C1—Mo172.36 (11)
C3i—Mo1—Mo2134.35 (4)C2i—C1—Mo172.36 (11)
C3—Mo1—Mo2134.35 (4)C2—C1—H1115.5
C2i—Mo1—Mo2133.65 (4)C2i—C1—H1115.5
C2—Mo1—Mo2133.65 (4)Mo1—C1—H1134.8
C4i—Mo1—Mo2135.14 (4)C3—C2—C1128.13 (16)
C4—Mo1—Mo2135.14 (4)C3—C2—Mo171.51 (9)
C1—Mo1—H9138.4 (8)C1—C2—Mo171.34 (11)
C3i—Mo1—H9150.9 (8)C3—C2—H2115.9
C3—Mo1—H992.2 (8)C1—C2—H2115.9
C2i—Mo1—H9172.9 (8)Mo1—C2—H2136.7
C2—Mo1—H9108.9 (8)C2—C3—C4128.89 (14)
C4i—Mo1—H9118.8 (8)C2—C3—Mo172.30 (8)
C4—Mo1—H996.4 (8)C4—C3—Mo172.30 (8)
Mo2—Mo1—H943.5 (8)C2—C3—H3115.6
C1—Mo1—H1088.2 (12)C4—C3—H3115.6
C3i—Mo1—H10126.8 (6)Mo1—C3—H3134.8
C3—Mo1—H10126.8 (6)C4i—C4—C3128.44 (9)
C2i—Mo1—H1099.5 (10)C4i—C4—Mo171.95 (4)
C2—Mo1—H1099.5 (10)C3—C4—Mo171.42 (8)
C4i—Mo1—H10161.7 (2)C4i—C4—H4115.8
C4—Mo1—H10161.7 (2)C3—C4—H4115.8
Mo2—Mo1—H1045.0 (12)Mo1—C4—H4136.3
H9—Mo1—H1074.3 (12)C6—C5—C6i129.4 (2)
C7—Mo2—C7i89.12 (8)C6—C5—Mo272.45 (10)
C7—Mo2—C568.23 (5)C6i—C5—Mo272.45 (10)
C7i—Mo2—C568.23 (5)C6—C5—H5115.3
C7—Mo2—C836.34 (6)C6i—C5—H5115.3
C7i—Mo2—C868.40 (6)Mo2—C5—H5134.9
C5—Mo2—C888.61 (7)C7—C6—C5127.92 (15)
C7—Mo2—C8i68.40 (6)C7—C6—Mo271.17 (8)
C7i—Mo2—C8i36.34 (6)C5—C6—Mo271.32 (10)
C5—Mo2—C8i88.61 (7)C7—C6—H6116.0
C8—Mo2—C8i36.31 (8)C5—C6—H6116.0
C7—Mo2—C636.23 (6)Mo2—C6—H6137.1
C7i—Mo2—C688.85 (6)C6—C7—C8129.00 (14)
C5—Mo2—C636.23 (5)C6—C7—Mo272.60 (8)
C8—Mo2—C668.13 (6)C8—C7—Mo272.36 (8)
C8i—Mo2—C688.67 (6)C6—C7—H7115.5
C7—Mo2—C6i88.85 (6)C8—C7—H7115.5
C7i—Mo2—C6i36.23 (6)Mo2—C7—H7134.4
C5—Mo2—C6i36.23 (5)C7—C8—C8i128.35 (9)
C8—Mo2—C6i88.67 (6)C7—C8—Mo271.30 (8)
C8i—Mo2—C6i68.13 (6)C8i—C8—Mo271.84 (4)
C6—Mo2—C6i68.18 (8)C7—C8—H8115.8
C7—Mo2—Mo1134.12 (4)C8i—C8—H8115.8
C7i—Mo2—Mo1134.12 (4)Mo2—C8—H8136.5
C5—Mo2—Mo1133.67 (6)Mo1—H9—Mo292 (1)
C8—Mo2—Mo1134.73 (4)Mo1—H10—Mo289 (2)
C1—Mo1—Mo2—C7−102.21 (6)C4i—Mo1—C3—C2120.12 (10)
C3i—Mo1—Mo2—C7155.85 (9)C4—Mo1—C3—C2142.53 (14)
C3—Mo1—Mo2—C7−0.26 (9)Mo2—Mo1—C3—C2−107.37 (9)
C2i—Mo1—Mo2—C7−153.00 (9)C1—Mo1—C3—C4−120.06 (10)
C2—Mo1—Mo2—C7−51.41 (9)C3i—Mo1—C3—C4−53.07 (11)
C4i—Mo1—Mo2—C7103.85 (9)C2i—Mo1—C3—C4−89.27 (10)
C4—Mo1—Mo2—C751.74 (9)C2—Mo1—C3—C4−142.53 (14)
C1—Mo1—Mo2—C7i102.21 (6)C4i—Mo1—C3—C4−22.42 (7)
C3i—Mo1—Mo2—C7i0.26 (9)Mo2—Mo1—C3—C4110.10 (9)
C3—Mo1—Mo2—C7i−155.85 (9)C2—C3—C4—C4i−1.3 (2)
C2i—Mo1—Mo2—C7i51.41 (9)Mo1—C3—C4—C4i46.82 (7)
C2—Mo1—Mo2—C7i153.00 (9)C2—C3—C4—Mo1−48.12 (14)
C4i—Mo1—Mo2—C7i−51.74 (9)C1—Mo1—C4—C4i−89.56 (2)
C4—Mo1—Mo2—C7i−103.85 (9)C3i—Mo1—C4—C4i−22.52 (6)
C1—Mo1—Mo2—C50.0C3—Mo1—C4—C4i−143.08 (8)
C3i—Mo1—Mo2—C5−101.94 (6)C2i—Mo1—C4—C4i−53.25 (5)
C3—Mo1—Mo2—C5101.94 (6)C2—Mo1—C4—C4i−120.30 (5)
C2i—Mo1—Mo2—C5−50.79 (7)Mo2—Mo1—C4—C4i109.12 (5)
C2—Mo1—Mo2—C550.79 (7)C1—Mo1—C4—C353.52 (9)
C4i—Mo1—Mo2—C5−153.94 (6)C3i—Mo1—C4—C3120.56 (13)
C4—Mo1—Mo2—C5153.94 (6)C2i—Mo1—C4—C389.83 (10)
C1—Mo1—Mo2—C8−153.98 (6)C2—Mo1—C4—C322.78 (9)
C3i—Mo1—Mo2—C8104.07 (9)C4i—Mo1—C4—C3143.08 (8)
C3—Mo1—Mo2—C8−52.04 (9)Mo2—Mo1—C4—C3−107.80 (9)
C2i—Mo1—Mo2—C8155.22 (9)C7—Mo2—C5—C622.41 (10)
C2—Mo1—Mo2—C8−103.19 (9)C7i—Mo2—C5—C6120.56 (12)
C4i—Mo1—Mo2—C852.08 (9)C8—Mo2—C5—C653.32 (11)
C4—Mo1—Mo2—C8−0.04 (8)C8i—Mo2—C5—C689.65 (11)
C1—Mo1—Mo2—C8i153.98 (6)C6i—Mo2—C5—C6143.0 (2)
C3i—Mo1—Mo2—C8i52.04 (9)Mo1—Mo2—C5—C6−108.51 (10)
C3—Mo1—Mo2—C8i−104.07 (9)C7—Mo2—C5—C6i−120.56 (12)
C2i—Mo1—Mo2—C8i103.19 (9)C7i—Mo2—C5—C6i−22.41 (10)
C2—Mo1—Mo2—C8i−155.22 (9)C8—Mo2—C5—C6i−89.65 (11)
C4i—Mo1—Mo2—C8i0.04 (8)C8i—Mo2—C5—C6i−53.32 (11)
C4—Mo1—Mo2—C8i−52.08 (9)C6—Mo2—C5—C6i−143.0 (2)
C1—Mo1—Mo2—C6−51.00 (6)Mo1—Mo2—C5—C6i108.51 (10)
C3i—Mo1—Mo2—C6−152.94 (9)C6i—C5—C6—C72.0 (4)
C3—Mo1—Mo2—C650.94 (9)Mo2—C5—C6—C7−45.95 (16)
C2i—Mo1—Mo2—C6−101.80 (9)C6i—C5—C6—Mo248.0 (2)
C2—Mo1—Mo2—C6−0.21 (9)C7i—Mo2—C6—C790.09 (11)
C4i—Mo1—Mo2—C6155.06 (9)C5—Mo2—C6—C7143.20 (15)
C4—Mo1—Mo2—C6102.94 (9)C8—Mo2—C6—C722.96 (9)
C1—Mo1—Mo2—C6i51.00 (6)C8i—Mo2—C6—C753.74 (10)
C3i—Mo1—Mo2—C6i−50.94 (9)C6i—Mo2—C6—C7120.65 (8)
C3—Mo1—Mo2—C6i152.94 (9)Mo1—Mo2—C6—C7−108.80 (9)
C2i—Mo1—Mo2—C6i0.21 (9)C7—Mo2—C6—C5−143.20 (15)
C2—Mo1—Mo2—C6i101.80 (9)C7i—Mo2—C6—C5−53.11 (11)
C4i—Mo1—Mo2—C6i−102.94 (9)C8—Mo2—C6—C5−120.24 (12)
C4—Mo1—Mo2—C6i−155.06 (9)C8i—Mo2—C6—C5−89.46 (11)
C3i—Mo1—C1—C2−120.18 (12)C6i—Mo2—C6—C5−22.55 (12)
C3—Mo1—C1—C2−22.42 (10)Mo1—Mo2—C6—C5108.00 (11)
C2i—Mo1—C1—C2−142.6 (2)C5—C6—C7—C8−2.5 (3)
C4i—Mo1—C1—C2−89.35 (11)Mo2—C6—C7—C8−48.52 (14)
C4—Mo1—C1—C2−53.24 (11)C5—C6—C7—Mo246.00 (16)
Mo2—Mo1—C1—C2108.70 (10)C7i—Mo2—C7—C6−89.25 (10)
C3i—Mo1—C1—C2i22.42 (10)C5—Mo2—C7—C6−22.41 (9)
C3—Mo1—C1—C2i120.18 (12)C8—Mo2—C7—C6−142.34 (13)
C2—Mo1—C1—C2i142.6 (2)C8i—Mo2—C7—C6−119.89 (10)
C4i—Mo1—C1—C2i53.24 (11)C6i—Mo2—C7—C6−53.01 (10)
C4—Mo1—C1—C2i89.35 (11)Mo1—Mo2—C7—C6108.01 (9)
Mo2—Mo1—C1—C2i−108.70 (10)C7i—Mo2—C7—C853.09 (10)
C2i—C1—C2—C3−1.8 (4)C5—Mo2—C7—C8119.93 (10)
Mo1—C1—C2—C346.32 (16)C8i—Mo2—C7—C822.45 (7)
C2i—C1—C2—Mo1−48.2 (2)C6—Mo2—C7—C8142.34 (13)
C1—Mo1—C2—C3−143.14 (15)C6i—Mo2—C7—C889.33 (10)
C3i—Mo1—C2—C3−89.72 (11)Mo1—Mo2—C7—C8−109.65 (9)
C2i—Mo1—C2—C3−120.36 (8)C6—C7—C8—C8i2.0 (2)
C4i—Mo1—C2—C3−53.42 (10)Mo2—C7—C8—C8i−46.58 (7)
C4—Mo1—C2—C3−22.83 (9)C6—C7—C8—Mo248.61 (14)
Mo2—Mo1—C2—C3109.41 (8)C7i—Mo2—C8—C7−120.70 (12)
C3i—Mo1—C2—C153.42 (11)C5—Mo2—C8—C7−53.62 (8)
C3—Mo1—C2—C1143.14 (15)C8i—Mo2—C8—C7−143.16 (8)
C2i—Mo1—C2—C122.78 (12)C6—Mo2—C8—C7−22.90 (9)
C4i—Mo1—C2—C189.72 (11)C6i—Mo2—C8—C7−89.86 (10)
C4—Mo1—C2—C1120.31 (12)Mo1—Mo2—C8—C7107.88 (8)
Mo2—Mo1—C2—C1−107.45 (11)C7—Mo2—C8—C8i143.16 (8)
C1—C2—C3—C41.9 (3)C7i—Mo2—C8—C8i22.47 (5)
Mo1—C2—C3—C448.12 (14)C5—Mo2—C8—C8i89.54 (2)
C1—C2—C3—Mo1−46.26 (17)C6—Mo2—C8—C8i120.26 (5)
C1—Mo1—C3—C222.48 (9)C6i—Mo2—C8—C8i53.30 (5)
C3i—Mo1—C3—C289.47 (10)Mo1—Mo2—C8—C8i−108.96 (5)
C2i—Mo1—C3—C253.27 (10)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2832).

References

  • Alvarez, M. A., Garcia, M. E., Ramos, A. & Ruiz, M. A. (2006). Organometallics, 26, 5374–5380.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Darensbourg, M. Y., Atwood, J. L., Hunter, W. E. & Burch, R. R. Jr (1980). J. Am. Chem. Soc.101, 3290–3292.
  • Jones, R. A., Chiu, K. W., Wilkinson, G., Galas, A. M. R. & Hursthouse, M. B. (1980). J. Chem. Soc. Chem. Commun. pp. 408–409.
  • Lin, J. T., Yeh, A. C., Tasai, T. Y. R. & Wen, Y. S. (1993). J. Organomet. Chem.453, 221–229.
  • Petersen, J. L., Masimo, A. & Stewart, R. P. Jr (1981). J. Organomet. Chem.208, 55–71.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shima, T. & Suzuki, H. (2005). Organometallics, 24, 3939–3945.
  • Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Süss-Fink, G. & Therrien, B. (2007). Organometallics, 26, 766–774.
  • Tamm, M., Bannenberg, T., Frölich, R., Grimme, S. & Gerenkamp, M. (2004). Dalton Trans. pp. 482–491. [PubMed]
  • Tamm, M., Dressel, B., Bannenberg, T., Grunenberg, J. & Herdtweck, E. (2006). Z. Naturforsch. Teil B, 61, 896–903.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography