PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m94.
Published online 2008 December 17. doi:  10.1107/S1600536808042219
PMCID: PMC2967926

Bis(μ-pyridazine-3-carboxyl­ato-κ2 O:O′)bis­[aqua­dioxido(pyridazine-3-carboxyl­ato-κ2 N 2,O)uranium(VI)] dihydrate

Abstract

The structure of the binuclear title complex, [U2(C5H3N2O2)4O4(H2O)2]·2H2O, is composed of centrosymmetric dimers in which each UO2 2+ ion is coordinated by two ligand mol­ecules. One donates its N,O-bonding group and the other donates both carboxyl­ate O atoms. Each of the latter bridges adjacent uranyl ions. The coordination environment of the metal center is a distorted penta­gonal bipyramid. The dimers are inter­connected by O—H(...)O hydrogen bonds between coordinated and uncoordinated water mol­ecules and carboxyl­ate O atoms. An intra­molecular O—H(...)N inter­action is also present.

Related literature

For the crystal structure of pyridazine–3–carboxylic acid hydro­chloride, see: Gryz et al. (2003 [triangle]). For centrosymmetric dimeric mol­ecules with a different bridging mode for the title ligand to calcium(II), see: Starosta & Leciejewicz (2007 [triangle]). For bond distances and angles in uranyl complexes with carboxyl­ate ligands, see: Leciejewicz et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m94-scheme1.jpg

Experimental

Crystal data

  • [U2(C5H3N2O2)4O4(H2O)2]·2H2O
  • M r = 1104.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m94-efi2.jpg
  • a = 25.660 (5) Å
  • b = 6.8330 (14) Å
  • c = 16.673 (3) Å
  • β = 96.73 (3)°
  • V = 2903.2 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.23 mm−1
  • T = 293 (2) K
  • 0.19 × 0.12 × 0.07 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.234, T max = 0.470
  • 4406 measured reflections
  • 4266 independent reflections
  • 2746 reflections with I > 2σ(I)
  • R int = 0.025
  • 3 standard reflections every 200 reflections intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.127
  • S = 1.01
  • 4266 reflections
  • 220 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.83 e Å−3
  • Δρmin = −4.65 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042219/rk2117sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042219/rk2117Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structure of the title compound is built of centrosymmetric dimeric molecules (Fig. 1) in which each UO22+ ion is coordinated by two ligand molecules: one chelates through its N,O–bonding group, the other donates only carboxylate O atoms which bridge two adjacent uranyl ions. The U ions, ligand molecules and coordinated water O atoms form a plane [r.m.s 0.1063 (2) Å]. The coordination around the uranyl ion is pentagonal bipyramidal. The equatorial plane of the pyramid [r.m.s 0.0674 (2) Å] consists of a water O3 atom, a hetro–cycle N21 atom, a carboxylate O21 atom donated by one ligand molecule, and two bridging O11 and O12 atoms, each donated by the other ligand molecules. Maximum shifts from the mean plane show the N21 [+0.1228 (2) Å] and the carboxylate O21 [-0.1056 (2) Å] atoms. The mean U—O bond distance in the UO22+ ion is 1.755 (8) Å], the O1—U—O2 angle is 178.2 (3)°. The U—O bond distances and bond angles within the equatorial plane fall in the range commonly observed in uranyl complexes with carboxylate ligands (Leciejewicz et al., 1995). Bond lengths and bond angles within the ligand molecules agree well with those reported in the structure of the title ligand (Gryz et al., 2003). The dimers interact by H bonds and form molecular sheet in which coordinated and solvent water molecules are the donors and carboxylate O atoms - the acceptors (Fig. 2). An intra–dimer H bond of 2.754 (9) Å is also observed.

Experimental

Hot aqueous solutions containing 2 mmol of pyridazine–3–carboxylic acid and 1 mmol of uranyl nitrate hexahydrate, respectively, were mixed and boiled for two hours with constant stirring and left to crystallize at room temperature. After few days, well formed green single crystals were found in the mother liquor. They were washed with cold ethanol and dried in air.

Refinement

C–bonded H atoms were placed in idealized positions and refined with a riding model approximation with C—H 0.93 Å and Uiso(H) = 1.2Ueq(C). The positions of water H atoms were initially located from Fourier maps and refined with constraints on O—H distances and individual H isotropic displacement parameters.

A maximum peak of 2.83 eÅ-3 at 1.06Å and a deepest hole of -4.65 eÅ-3 at 0.96 Å from the U1 atom were found on the final electron density map.

Figures

Fig. 1.
View a dimer of title compound with the atom labelling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i)-x+1, y, -z+1/2.
Fig. 2.
Packing diagram of the crystal structure.

Crystal data

[U2(C5H3N2O2)4O4(H2O)2]·2H2OF(000) = 2032
Mr = 1104.50Dx = 2.527 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 25.660 (5) Åθ = 6–15°
b = 6.8330 (14) ŵ = 11.23 mm1
c = 16.673 (3) ÅT = 293 K
β = 96.73 (3)°Block, light green
V = 2903.2 (10) Å30.19 × 0.12 × 0.07 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer2746 reflections with I > 2σ(I)
Radiation source: Fine–focus sealed tubeRint = 0.025
Graphiteθmax = 30.1°, θmin = 1.6°
ω/2θ profile scansh = −36→35
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = −9→0
Tmin = 0.234, Tmax = 0.470l = 0→23
4406 measured reflections3 standard reflections every 200 reflections
4266 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: Geom
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0893P)2], where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 2.83 e Å3
5 restraintsΔρmin = −4.65 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
U10.388813 (9)0.70410 (6)0.214716 (15)0.02772 (11)
O110.4687 (2)0.7142 (12)0.1613 (4)0.0436 (16)
O210.3379 (2)0.7086 (11)0.3224 (3)0.0425 (16)
C140.5457 (4)0.7835 (16)−0.0802 (6)0.044 (2)
H140.57400.8037−0.10920.052*
C160.5070 (3)0.7471 (11)0.0398 (5)0.0267 (16)
O120.5529 (2)0.7589 (12)0.1677 (4)0.0483 (19)
N210.2881 (3)0.6906 (12)0.1781 (4)0.0365 (17)
N110.4595 (3)0.7245 (12)−0.0016 (4)0.0345 (15)
C260.2583 (3)0.6998 (13)0.2373 (5)0.0289 (15)
N120.4535 (3)0.7342 (14)−0.0813 (4)0.0423 (19)
O10.3944 (2)0.4495 (11)0.2272 (4)0.0420 (15)
C150.5519 (3)0.7755 (15)0.0024 (5)0.0380 (19)
H150.58470.78840.03210.046*
C170.5096 (3)0.7400 (12)0.1300 (5)0.0274 (16)
C130.4960 (5)0.7605 (15)−0.1178 (5)0.046 (2)
H130.49160.7636−0.17390.056*
O30.3712 (2)0.6478 (13)0.0725 (4)0.0480 (19)
H320.361 (5)0.537 (8)0.060 (8)0.072*
H310.398 (3)0.655 (19)0.050 (7)0.072*
O220.2641 (2)0.7074 (12)0.3803 (4)0.0478 (17)
O20.3827 (3)0.9573 (12)0.1990 (4)0.0501 (17)
N220.2650 (3)0.6893 (14)0.0999 (4)0.046 (2)
C270.2882 (3)0.7068 (14)0.3202 (5)0.0313 (15)
C250.2035 (3)0.7050 (14)0.2253 (6)0.0371 (18)
H250.18330.70940.26810.045*
C230.2131 (4)0.6890 (16)0.0858 (6)0.045 (2)
H230.19760.67860.03270.054*
C240.1812 (3)0.7034 (18)0.1457 (7)0.051 (3)
H240.14500.71180.13310.061*
O40.3251 (3)0.6999 (15)0.5313 (5)0.058 (2)
H420.311 (5)0.75 (2)0.567 (5)0.086*
H410.306 (5)0.71 (2)0.488 (4)0.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
U10.01643 (13)0.04731 (19)0.02056 (14)0.00034 (12)0.00697 (8)0.00059 (13)
O110.022 (3)0.087 (5)0.023 (3)−0.010 (3)0.007 (2)−0.006 (3)
O210.027 (3)0.082 (5)0.020 (2)−0.001 (3)0.010 (2)0.001 (3)
C140.048 (5)0.054 (5)0.033 (4)−0.009 (4)0.025 (4)−0.002 (4)
C160.024 (3)0.033 (5)0.025 (3)0.001 (2)0.007 (3)−0.003 (3)
O120.022 (3)0.100 (6)0.024 (3)0.000 (3)0.002 (2)0.012 (3)
N210.021 (3)0.065 (5)0.025 (3)0.001 (3)0.008 (2)0.003 (3)
N110.029 (3)0.054 (5)0.021 (3)−0.002 (3)0.005 (2)0.002 (3)
C260.019 (3)0.040 (4)0.029 (3)0.004 (3)0.008 (2)0.004 (3)
N120.045 (4)0.060 (6)0.021 (3)−0.003 (4)0.002 (3)−0.003 (3)
O10.039 (3)0.049 (4)0.040 (3)0.003 (3)0.014 (3)0.006 (3)
C150.026 (4)0.060 (6)0.030 (4)−0.002 (4)0.013 (3)0.005 (4)
C170.023 (3)0.038 (5)0.023 (3)0.005 (3)0.009 (3)0.005 (3)
C130.064 (6)0.056 (7)0.021 (4)−0.007 (5)0.010 (4)0.000 (4)
O30.021 (3)0.094 (6)0.030 (3)−0.003 (3)0.009 (2)0.000 (3)
O220.030 (3)0.088 (5)0.027 (3)0.010 (3)0.015 (2)0.002 (3)
O20.057 (4)0.047 (4)0.048 (4)−0.003 (3)0.014 (3)0.006 (3)
N220.027 (3)0.088 (7)0.024 (3)0.001 (3)0.003 (3)0.005 (4)
C270.022 (3)0.041 (4)0.033 (4)0.007 (3)0.011 (3)0.006 (4)
C250.021 (3)0.046 (5)0.046 (5)−0.003 (3)0.013 (3)0.004 (4)
C230.032 (4)0.069 (7)0.034 (4)0.000 (4)−0.004 (3)0.010 (4)
C240.014 (3)0.074 (7)0.064 (7)0.000 (4)−0.003 (3)0.010 (6)
O40.041 (4)0.100 (7)0.033 (3)0.012 (4)0.010 (3)0.008 (4)

Geometric parameters (Å, °)

U1—O21.754 (8)N21—N221.367 (10)
U1—O11.756 (8)N11—N121.321 (10)
U1—O112.331 (6)C26—C251.399 (10)
U1—O212.342 (5)C26—C271.501 (11)
U1—O12i2.352 (6)N12—C131.322 (13)
U1—O32.393 (6)C15—H150.9300
U1—N212.588 (7)C13—H130.9300
O11—C171.236 (9)O3—H320.82 (6)
O21—C271.272 (9)O3—H310.82 (9)
C14—C131.362 (15)O22—C271.237 (9)
C14—C151.369 (12)N22—C231.326 (11)
C14—H140.9300C25—C241.382 (15)
C16—N111.338 (10)C25—H250.9300
C16—C151.385 (10)C23—C241.368 (15)
C16—C171.500 (11)C23—H230.9300
O12—C171.218 (9)C24—H240.9300
O12—U1i2.352 (6)O4—H420.81 (11)
N21—C261.317 (9)O4—H410.83 (8)
O2—U1—O1178.2 (3)N22—N21—U1122.2 (5)
O2—U1—O1188.9 (3)N12—N11—C16120.3 (7)
O1—U1—O1190.7 (3)N21—C26—C25123.8 (8)
O2—U1—O2193.1 (3)N21—C26—C27114.4 (6)
O1—U1—O2188.1 (3)C25—C26—C27121.8 (7)
O11—U1—O21152.6 (2)N11—N12—C13117.6 (8)
O2—U1—O12i90.3 (3)C14—C15—C16117.0 (8)
O1—U1—O12i91.4 (3)C14—C15—H15121.5
O11—U1—O12i79.1 (2)C16—C15—H15121.5
O21—U1—O12i73.5 (2)O12—C17—O11124.4 (7)
O2—U1—O390.4 (3)O12—C17—C16116.3 (7)
O1—U1—O387.8 (3)O11—C17—C16119.2 (7)
O11—U1—O372.4 (2)N12—C13—C14125.6 (8)
O21—U1—O3134.8 (2)N12—C13—H13117.2
O12i—U1—O3151.5 (2)C14—C13—H13117.2
O2—U1—N2186.0 (3)U1—O3—H32115 (9)
O1—U1—N2193.3 (3)U1—O3—H31112 (9)
O11—U1—N21144.2 (2)H32—O3—H31101 (10)
O21—U1—N2163.2 (2)C23—N22—N21118.8 (7)
O12i—U1—N21136.3 (2)O22—C27—O21124.7 (8)
O3—U1—N2172.1 (2)O22—C27—C26119.8 (7)
C17—O11—U1173.0 (7)O21—C27—C26115.4 (6)
C27—O21—U1128.7 (5)C24—C25—C26115.6 (8)
C13—C14—C15116.8 (8)C24—C25—H25122.2
C13—C14—H14121.6C26—C25—H25122.2
C15—C14—H14121.6N22—C23—C24123.1 (9)
N11—C16—C15122.6 (8)N22—C23—H23118.5
N11—C16—C17116.3 (7)C24—C23—H23118.5
C15—C16—C17121.0 (7)C23—C24—C25119.1 (8)
C17—O12—U1i150.0 (6)C23—C24—H24120.4
C26—N21—N22119.4 (7)C25—C24—H24120.4
C26—N21—U1118.2 (5)H42—O4—H41110 (12)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H42···O22ii0.81 (11)2.23 (9)2.933 (9)146 (14)
O4—H41···O220.83 (8)1.98 (8)2.803 (10)175 (13)
O3—H31···N110.82 (9)1.94 (9)2.754 (9)170 (13)
O3—H32···O4iii0.82 (6)1.90 (9)2.707 (12)170 (13)

Symmetry codes: (ii) −x+1/2, −y+3/2, −z+1; (iii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2117).

References

  • Gryz, M., Starosta, W., Ptasiewicz–Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem.56, 1505–1511.
  • Kuma (1996). KM–4 Software Kuma Diffraction Ltd. Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd. Wrocław, Poland.
  • Leciejewicz, J., Alcock, N. W. & Kemp, T. J. (1995). Struct. Bonding (Berlin), 82, 43–85.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Starosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662–m1663.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography