PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m91.
Published online 2008 December 17. doi:  10.1107/S1600536808039615
PMCID: PMC2967923

Aqua­bis(2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olato)zinc(II) monohydrate

Abstract

The crystal structure of the title compound, [Zn(C9H7N2O2)2(H2O)]·H2O, involves discrete mononuclear complex mol­ecules. The special positions on the rotation twofold axis are occupied by ZnII and O atoms of the coordinated and uncoordinated water mol­ecules. The coordination around the ZnII atom can be described as transitional from trigonal-bipyramidal to square-pyramidal. The two chelating 2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands and the coordin­ated water mol­ecule form the Zn coordination. O—H(...)O hydrogen bonds between the coordinated water mol­ecule and the ligand and between the uncoordinated water mol­ecule and the ligand dominate the crystal packing.

Related literature

For the design and synthesis of self-assembling systems with organic ligands containing N and O donors, see: Bayot et al. (2006 [triangle]); Chen et al. (2007 [triangle]). For the structures of quinolin-8-ol complexes, see: Wu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m91-scheme1.jpg

Experimental

Crystal data

  • [Zn(C9H7N2O2)2(H2O)]·H2O
  • M r = 451.73
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m91-efi1.jpg
  • a = 7.7670 (16) Å
  • b = 16.045 (3) Å
  • c = 14.006 (3) Å
  • V = 1745.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.46 mm−1
  • T = 293 (2) K
  • 0.25 × 0.15 × 0.12 mm

Data collection

  • Rigaku Scxmini 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.752, T max = 0.831
  • 16899 measured reflections
  • 2005 independent reflections
  • 1470 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.128
  • S = 1.07
  • 2005 reflections
  • 141 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039615/kp2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039615/kp2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Considerable attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Chen, et al., 2007). Quinolin-8-ol is one such ligand and several crystal structures of complexes containing it have been reported (Wu et al., 2006). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), the Zn atom is penta-coordinated by two pyridine nitrogen atoms and two oxygen atoms from the hydroxy groups and water molecule (Fig. 1 and Table 1). Intermolecular O—H···O hydrogen bonds (Table 2 and Fig. 2) connect the molecules of (I) define the crystal packing.

Experimental

All chemicals used (reagent grade) were commercially available. An aqueous solution (5 ml) of ZnCl2 (13.6 mg, 0.1 mmol) was added by constant stirring to an ethanol solution (10 ml) containing 2-methyl-9-hydroxylpyrido [1,2-a]pyrimidin-4-one (17.6 mg, 0.1 mmol) then filtered off. After a few days, colourless, well shaped single crystals in the form of prisms deposited in the mother-liquid. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement

In general, H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.94Å and Uiso(H) = 1.2Ueq(C). The H of water were located from the difference map and refined freely.

Figures

Fig. 1.
The molecular structure of the title molecule and the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: -x, y, 0.5 - z.]
Fig. 2.
Crystal packing of the compound (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[Zn(C9H7N2O2)2(H2O)]·H2OF(000) = 928
Mr = 451.73Dx = 1.719 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 13380 reflections
a = 7.7670 (16) Åθ = 3.0–27.6°
b = 16.045 (3) ŵ = 1.46 mm1
c = 14.006 (3) ÅT = 293 K
V = 1745.4 (6) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.12 mm

Data collection

Rigaku Scxmini 1K CCD area-detector diffractometer2005 independent reflections
Radiation source: fine-focus sealed tube1470 reflections with I > 2σ(I)
graphiteRint = 0.070
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 3.3°
Thin–slice ω scansh = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −20→20
Tmin = 0.752, Tmax = 0.831l = −18→18
16899 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0591P)2 + 2.2542P] where P = (Fo2 + 2Fc2)/3
2005 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0089 (4)0.1222 (2)0.4495 (2)0.0220 (7)
C2−0.1741 (4)0.0991 (2)0.4103 (2)0.0242 (7)
C3−0.2932 (5)0.0659 (2)0.4714 (3)0.0290 (8)
H3A−0.40120.05080.44840.035*
C4−0.2541 (5)0.0543 (2)0.5686 (2)0.0301 (8)
H4A−0.33660.03170.60920.036*
C5−0.0987 (5)0.0754 (2)0.6036 (2)0.0308 (8)
H5A−0.07470.06680.66800.037*
C60.1875 (5)0.1347 (2)0.5853 (2)0.0287 (8)
C70.3026 (5)0.1688 (2)0.5193 (3)0.0301 (8)
H7A0.41050.18590.54020.036*
C80.2616 (4)0.1779 (2)0.4246 (2)0.0240 (7)
C90.3867 (5)0.2129 (2)0.3541 (3)0.0332 (9)
H9A0.33460.21430.29200.050*
H9B0.48770.17840.35230.050*
H9C0.41820.26840.37290.050*
N10.1066 (4)0.15560 (17)0.39001 (19)0.0230 (6)
N20.0251 (3)0.10953 (18)0.54498 (19)0.0235 (6)
O1−0.1984 (3)0.11255 (17)0.31857 (17)0.0322 (6)
O20.2095 (4)0.12461 (18)0.67183 (17)0.0383 (7)
Zn10.00000.16492 (4)0.25000.0259 (2)
O30.00000.2946 (3)0.25000.0420 (10)
O4−0.5000−0.0113 (3)0.75000.0529 (12)
H4B−0.420 (7)−0.038 (4)0.765 (4)0.08 (2)*
H3B0.069 (6)0.320 (3)0.232 (3)0.046 (15)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0236 (16)0.0234 (15)0.0189 (15)0.0037 (15)0.0017 (14)−0.0002 (12)
C20.0215 (17)0.0284 (18)0.0225 (17)0.0009 (14)0.0003 (14)0.0009 (14)
C30.0224 (17)0.037 (2)0.0275 (18)−0.0033 (15)0.0014 (15)0.0022 (15)
C40.0279 (19)0.037 (2)0.0254 (18)−0.0065 (16)0.0099 (15)0.0032 (16)
C50.035 (2)0.038 (2)0.0197 (16)−0.0017 (17)0.0052 (16)0.0021 (15)
C60.0291 (19)0.0329 (19)0.0241 (17)0.0021 (16)−0.0055 (15)−0.0049 (15)
C70.0211 (17)0.036 (2)0.0335 (18)−0.0014 (15)−0.0031 (15)−0.0063 (16)
C80.0206 (16)0.0242 (17)0.0273 (17)0.0008 (13)0.0030 (14)−0.0064 (14)
C90.030 (2)0.040 (2)0.0295 (18)−0.0102 (17)0.0041 (16)−0.0066 (16)
N10.0222 (15)0.0285 (15)0.0185 (13)−0.0024 (12)0.0024 (11)−0.0012 (11)
N20.0234 (16)0.0295 (15)0.0177 (13)0.0005 (12)0.0015 (11)−0.0008 (11)
O10.0234 (13)0.0505 (16)0.0228 (12)−0.0071 (12)−0.0026 (10)0.0072 (11)
O20.0387 (16)0.0545 (17)0.0218 (13)−0.0045 (14)−0.0078 (11)0.0000 (12)
Zn10.0240 (3)0.0347 (3)0.0191 (3)0.0000.0024 (2)0.000
O30.040 (2)0.032 (2)0.054 (3)0.0000.021 (2)0.000
O40.046 (3)0.059 (3)0.054 (3)0.0000.000 (3)0.000

Geometric parameters (Å, °)

C1—N11.336 (4)C7—C81.372 (5)
C1—N21.378 (4)C7—H7A0.9300
C1—C21.444 (5)C8—N11.346 (4)
C2—O11.316 (4)C8—C91.494 (5)
C2—C31.368 (5)C9—H9A0.9600
C3—C41.408 (5)C9—H9B0.9600
C3—H3A0.9300C9—H9C0.9600
C4—C51.346 (5)N1—Zn12.134 (3)
C4—H4A0.9300O1—Zn12.001 (2)
C5—N21.379 (4)Zn1—O1i2.001 (2)
C5—H5A0.9300Zn1—O32.081 (4)
C6—O21.234 (4)Zn1—N1i2.134 (3)
C6—C71.398 (5)O3—H3B0.72 (4)
C6—N21.440 (4)O4—H4B0.78 (5)
N1—C1—N2122.4 (3)C8—C9—H9A109.5
N1—C1—C2117.5 (3)C8—C9—H9B109.5
N2—C1—C2120.1 (3)H9A—C9—H9B109.5
O1—C2—C3125.2 (3)C8—C9—H9C109.5
O1—C2—C1117.2 (3)H9A—C9—H9C109.5
C3—C2—C1117.6 (3)H9B—C9—H9C109.5
C2—C3—C4120.7 (3)C1—N1—C8118.9 (3)
C2—C3—H3A119.7C1—N1—Zn1109.9 (2)
C4—C3—H3A119.7C8—N1—Zn1131.2 (2)
C5—C4—C3120.9 (3)C1—N2—C5120.2 (3)
C5—C4—H4A119.6C1—N2—C6120.5 (3)
C3—C4—H4A119.6C5—N2—C6119.3 (3)
C4—C5—N2120.5 (3)C2—O1—Zn1115.3 (2)
C4—C5—H5A119.7O1—Zn1—O1i130.33 (16)
N2—C5—H5A119.7O1—Zn1—O3114.83 (8)
O2—C6—C7127.8 (4)O1i—Zn1—O3114.83 (8)
O2—C6—N2118.0 (3)O1—Zn1—N1i96.48 (10)
C7—C6—N2114.2 (3)O1i—Zn1—N1i80.11 (10)
C8—C7—C6122.2 (3)O3—Zn1—N1i94.02 (7)
C8—C7—H7A118.9O1—Zn1—N180.11 (10)
C6—C7—H7A118.9O1i—Zn1—N196.48 (10)
N1—C8—C7121.8 (3)O3—Zn1—N194.02 (7)
N1—C8—C9116.4 (3)N1i—Zn1—N1171.96 (15)
C7—C8—C9121.8 (3)Zn1—O3—H3B125 (4)
N1—C1—C2—O10.1 (5)N1—C1—N2—C62.0 (5)
N2—C1—C2—O1−179.8 (3)C2—C1—N2—C6−178.2 (3)
N1—C1—C2—C3−179.2 (3)C4—C5—N2—C1−0.2 (5)
N2—C1—C2—C30.9 (5)C4—C5—N2—C6177.5 (3)
O1—C2—C3—C4−179.8 (3)O2—C6—N2—C1177.5 (3)
C1—C2—C3—C4−0.6 (5)C7—C6—N2—C1−2.0 (5)
C2—C3—C4—C5−0.1 (6)O2—C6—N2—C5−0.1 (5)
C3—C4—C5—N20.5 (6)C7—C6—N2—C5−179.7 (3)
O2—C6—C7—C8−178.9 (4)C3—C2—O1—Zn1178.4 (3)
N2—C6—C7—C80.6 (5)C1—C2—O1—Zn1−0.9 (4)
C6—C7—C8—N11.1 (5)C2—O1—Zn1—O1i91.1 (2)
C6—C7—C8—C9−178.7 (3)C2—O1—Zn1—O3−88.9 (2)
N2—C1—N1—C8−0.2 (5)C2—O1—Zn1—N1i173.6 (2)
C2—C1—N1—C8179.9 (3)C2—O1—Zn1—N10.9 (2)
N2—C1—N1—Zn1−179.5 (2)C1—N1—Zn1—O1−0.8 (2)
C2—C1—N1—Zn10.7 (4)C8—N1—Zn1—O1−179.9 (3)
C7—C8—N1—C1−1.3 (5)C1—N1—Zn1—O1i−130.7 (2)
C9—C8—N1—C1178.5 (3)C8—N1—Zn1—O1i50.2 (3)
C7—C8—N1—Zn1177.8 (2)C1—N1—Zn1—O3113.7 (2)
C9—C8—N1—Zn1−2.4 (4)C8—N1—Zn1—O3−65.4 (3)
N1—C1—N2—C5179.6 (3)C1—N1—Zn1—N1i−66.3 (2)
C2—C1—N2—C5−0.6 (5)C8—N1—Zn1—N1i114.6 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3B···O2ii0.72 (4)2.11 (4)2.823 (3)170 (5)
O4—H4B···O1iii0.78 (5)2.23 (5)3.008 (4)176 (6)

Symmetry codes: (ii) −x+1/2, −y+1/2, z−1/2; (iii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2191).

References

  • Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun.359, 1390–1394.
  • Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography