PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m90.
Published online 2008 December 17. doi:  10.1107/S1600536808041913
PMCID: PMC2967922

catena-Poly[[aqua­(1,10-phenanthroline)cadmium(II)]-μ-benzene-1,4-di­carboxyl­ato]

Abstract

The title compound, [Cd(C8H4O4)(C12H8N2)(H2O)]n, is a new coordination polymer of benzene-1,4-dicarboxyl­ate with cadmium(II) and 1,10-phenanthroline. The CdII ion is coordinated by two N atoms from the 1,10-phenanthroline mol­ecule, three O atoms from two crystallographically independent benzene-1,4-dicarboxyl­ate ligands and the O atom of a coordinated water mol­ecule, forming a heavily distorted octa­hedron. The 1,10-phenanthroline ligand is approximately planar within 0.073 (4) Å. The two different benzene-1,4-dicarboxyl­ate ligands each coordinate to two CdII ions in bidentate and monodentate modes, forming an infinite zigzag chain. Adjacent chains are packed tightly by strong π–π inter­actions [centroid–centroid distances = 3.851 (2) and 3.859 (2) Å] between the aromatic rings of the benzene-1,4-dicarboxyl­ate ligand and the 1,10-phenanthroline of a neighboring chain, forming a sheet parallel to (011). Different sheets are linked together via O—H(...)O hydrogen bonds between the coordinated water mol­ecules and the O atoms of the carboxyl­ate groups, forming a three-dimensional network.

Related literature

For related literature, see: Go et al. (2004 [triangle]); Sun et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m90-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H4O4)(C12H8N2)(H2O)]
  • M r = 474.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m90-efi1.jpg
  • a = 9.1831 (5) Å
  • b = 9.6550 (6) Å
  • c = 11.3600 (7) Å
  • α = 104.6310 (8)°
  • β = 104.0390 (9)°
  • γ = 101.8920 (7)°
  • V = 906.28 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 298 (2) K
  • 0.10 × 0.08 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.888, T max = 0.952
  • 5387 measured reflections
  • 3939 independent reflections
  • 3428 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.081
  • S = 1.07
  • 3939 reflections
  • 261 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041913/ez2152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041913/ez2152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound (I) was obtained by chance when the synthesis of its polymorph RAMJAQ (Sun et al., 2001) was repeated for a fluorescence study. A single-crystal suitable for X-ray diffraction of I was crystallized from an H2O-EtOH (1:1) solvent mixture at room temperature.

The CdII ion is coordinated by two N atoms from the 1,10-phenanthroline, three O atoms from two crystallographically independent benzene-1,4-dicarboxylate ligands, and one O atom of a water molecule (Fig. 1). The 1,10-phenanthroline ligand is approximately planar, the maximum deviation of the C10 atom from the mean plane being 0.073 (4) Å. The geometries of the two crystallographically independent benzene-1,4-dicarboxylate ligands in (I) are similar to those observed by Go et al. (2004). The two different benzene-1,4-dicarboxylate ligands each coordinate to two CdII ions in chelate bidentate and monodentate modes, respectively, forming an infinite zigzag chain. All the bond distances and bond angles in the ligand are comparable to those values in its polymorph (Sun et al., 2001). Adjacent chains are packed tightly by strong π-π interactions between the aromatic rings of the 1,10-phenanthroline and benzene-1,4-dicarboxylate ligands to form a sheet along the (011) direction. Strong π-π interactions between the aromatic rings are indicated by the short distance between C2 and C12 of 3.580 (6) Å. Different sheets are linked together though hydrogen bonds (Table 1) between coordinated the water molecules and O atoms of the carboxylate groups to form a three-dimensional network (Fig. 2).

Experimental

Cd(NO3)2.4H2O (0.5 mmol, 154 mg), benzene-1,4-dicarboxylate acid (0.5 mmol, 84 mg), and 1,10-phenanthroline (0.5 mmol 90 mg) were added into 30 ml of the mixed solvent water and EtOH (1:1). The mixture was stirred at room temperature for 30 minutes and the pH value was adjusted to 7 by 1M NaOH to get a clear solution. The solution was allowed to evaporate in the air. Plate crystals of the title compound were obtained after 2 days. The crystals were filtered, washed by cold MeOH and dried in air. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement

H atoms bonded to atom O5 were located in a difference map and refined without any restraints. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 (2) Å, and Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
Molecular structure showing 50% probability displacement ellipsoids. Atoms marked with A and B are at the symmetry positions of (1 - x, -y, 1 - z) and (2 - x, 1 - y, -z), respectively.
Fig. 2.
Packing diagram viewed down the b axis, The hydrogen bonds are indicated in dotted line.

Crystal data

[Cd(C8H4O4)(C12H8N2)(H2O)]Z = 2
Mr = 474.74F(000) = 472
Triclinic, P1Dx = 1.74 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1831 (5) ÅCell parameters from 2096 reflections
b = 9.6550 (6) Åθ = 2.6–26.7°
c = 11.3600 (7) ŵ = 1.24 mm1
α = 104.6310 (8)°T = 298 K
β = 104.0390 (9)°Plate, colourless
γ = 101.8920 (7)°0.10 × 0.08 × 0.04 mm
V = 906.28 (9) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3939 independent reflections
Radiation source: fine-focus sealed tube3428 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→11
Tmin = 0.888, Tmax = 0.952k = −11→12
5387 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0384P)2 + 0.2384P] where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Experimental. all of H atoms on water molecules were located on intermediate difference Fourier map
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.95793 (3)0.18405 (3)0.35302 (2)0.02519 (9)
O11.0863 (3)−0.0176 (3)0.3642 (3)0.0414 (6)
O21.2261 (3)0.2183 (3)0.4339 (3)0.0405 (6)
O30.9956 (3)0.2355 (3)0.1778 (2)0.0359 (6)
O41.0395 (3)0.4563 (3)0.3186 (2)0.0391 (6)
O50.9890 (4)0.2639 (4)0.5669 (3)0.0405 (7)
N10.7280 (3)0.2663 (3)0.3305 (3)0.0303 (6)
N20.7334 (3)−0.0205 (3)0.2344 (3)0.0325 (7)
C11.2161 (4)0.0827 (4)0.4162 (3)0.0309 (8)
C21.3631 (4)0.0395 (4)0.4593 (3)0.0301 (7)
C31.4937 (4)0.1431 (4)0.5520 (4)0.0380 (9)
H31.49030.23990.58710.046*
C41.3706 (4)−0.1043 (4)0.4069 (4)0.0374 (9)
H41.2838−0.17490.34390.045*
C51.0181 (4)0.3738 (4)0.2075 (3)0.0300 (7)
C61.0122 (4)0.4413 (4)0.1011 (3)0.0291 (7)
C71.0364 (5)0.3674 (4)−0.0097 (3)0.0373 (9)
H71.06090.2775−0.01700.045*
C80.9751 (5)0.5750 (4)0.1105 (4)0.0398 (9)
H80.95800.62620.18470.048*
C90.7232 (5)0.4041 (4)0.3839 (4)0.0401 (9)
H90.81580.47530.43790.048*
C100.5850 (5)0.4462 (5)0.3622 (4)0.0499 (11)
H100.58590.54310.40270.060*
C110.4501 (5)0.3451 (5)0.2821 (4)0.0499 (11)
H110.35790.37280.26630.060*
C120.4487 (4)0.1981 (4)0.2224 (4)0.0362 (8)
C130.3116 (4)0.0852 (5)0.1363 (4)0.0475 (10)
H130.21740.10880.11610.057*
C140.3154 (4)−0.0539 (5)0.0839 (4)0.0476 (10)
H140.2250−0.12470.02580.057*
C150.4574 (4)−0.0949 (4)0.1162 (4)0.0418 (9)
C160.4649 (5)−0.2426 (5)0.0711 (5)0.0592 (13)
H160.3758−0.31780.01620.071*
C170.6024 (6)−0.2744 (5)0.1081 (6)0.0740 (17)
H170.6083−0.37160.07950.089*
C180.7343 (5)−0.1603 (4)0.1893 (4)0.0507 (11)
H180.8282−0.18350.21310.061*
C190.5959 (4)0.0121 (4)0.1992 (3)0.0295 (7)
C200.5924 (4)0.1633 (4)0.2516 (3)0.0274 (7)
H5A0.958 (5)0.200 (4)0.596 (4)0.032 (11)*
H5B0.960 (5)0.327 (4)0.596 (4)0.035 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02248 (13)0.02768 (14)0.02752 (14)0.01040 (9)0.00638 (9)0.01107 (10)
O10.0258 (13)0.0428 (15)0.0577 (17)0.0128 (12)0.0060 (12)0.0240 (13)
O20.0316 (14)0.0378 (15)0.0560 (17)0.0191 (12)0.0097 (12)0.0180 (13)
O30.0457 (15)0.0339 (14)0.0333 (13)0.0135 (12)0.0120 (12)0.0178 (11)
O40.0536 (17)0.0383 (14)0.0279 (13)0.0153 (13)0.0120 (12)0.0136 (11)
O50.0595 (19)0.0346 (16)0.0337 (15)0.0177 (15)0.0206 (14)0.0124 (13)
N10.0245 (15)0.0288 (15)0.0336 (15)0.0099 (12)0.0050 (12)0.0054 (13)
N20.0275 (15)0.0264 (15)0.0388 (16)0.0091 (12)0.0055 (13)0.0058 (13)
C10.0243 (17)0.045 (2)0.0348 (18)0.0181 (16)0.0120 (15)0.0218 (16)
C20.0251 (17)0.0342 (19)0.0364 (19)0.0156 (15)0.0090 (15)0.0151 (15)
C30.0314 (19)0.0314 (19)0.049 (2)0.0189 (16)0.0052 (17)0.0081 (17)
C40.0283 (19)0.0334 (19)0.043 (2)0.0106 (16)0.0010 (16)0.0080 (16)
C50.0274 (17)0.0364 (19)0.0305 (18)0.0120 (15)0.0090 (14)0.0154 (15)
C60.0308 (18)0.0300 (18)0.0267 (17)0.0109 (15)0.0066 (14)0.0102 (14)
C70.056 (2)0.0310 (19)0.0315 (19)0.0223 (18)0.0147 (17)0.0124 (15)
C80.057 (3)0.041 (2)0.0315 (19)0.0259 (19)0.0199 (18)0.0137 (16)
C90.035 (2)0.0285 (19)0.050 (2)0.0104 (16)0.0091 (18)0.0039 (17)
C100.047 (2)0.034 (2)0.070 (3)0.0220 (19)0.019 (2)0.010 (2)
C110.035 (2)0.051 (3)0.069 (3)0.024 (2)0.015 (2)0.019 (2)
C120.0273 (18)0.040 (2)0.042 (2)0.0138 (16)0.0068 (16)0.0136 (17)
C130.0243 (19)0.059 (3)0.052 (2)0.0127 (19)0.0004 (18)0.017 (2)
C140.0206 (18)0.053 (3)0.049 (2)−0.0023 (17)−0.0048 (17)0.009 (2)
C150.032 (2)0.043 (2)0.041 (2)0.0043 (17)0.0055 (17)0.0069 (18)
C160.041 (2)0.040 (2)0.067 (3)−0.002 (2)−0.002 (2)−0.005 (2)
C170.058 (3)0.030 (2)0.101 (4)0.011 (2)−0.003 (3)−0.008 (2)
C180.039 (2)0.034 (2)0.067 (3)0.0129 (18)0.004 (2)0.005 (2)
C190.0256 (17)0.0290 (18)0.0283 (17)0.0054 (14)0.0030 (14)0.0071 (14)
C200.0234 (16)0.0320 (18)0.0273 (17)0.0091 (14)0.0065 (13)0.0104 (14)

Geometric parameters (Å, °)

Cd1—O32.256 (2)C6—C81.387 (5)
Cd1—O52.281 (3)C7—C8ii1.385 (5)
Cd1—O22.330 (2)C7—H70.9300
Cd1—N22.366 (3)C8—C7ii1.386 (5)
Cd1—N12.384 (3)C8—H80.9300
Cd1—O12.489 (2)C9—C101.396 (5)
O1—C11.265 (4)C9—H90.9300
O2—C11.253 (4)C10—C111.349 (6)
O3—C51.251 (4)C10—H100.9300
O4—C51.255 (4)C11—C121.406 (5)
O5—H5A0.81 (4)C11—H110.9300
O5—H5B0.75 (4)C12—C201.411 (5)
N1—C91.330 (4)C12—C131.424 (5)
N1—C201.357 (4)C13—C141.336 (6)
N2—C181.320 (5)C13—H130.9300
N2—C191.354 (4)C14—C151.430 (5)
C1—C21.501 (4)C14—H140.9300
C2—C31.382 (5)C15—C191.400 (5)
C2—C41.389 (5)C15—C161.410 (6)
C3—C4i1.382 (5)C16—C171.354 (6)
C3—H30.9300C16—H160.9300
C4—C3i1.382 (5)C17—C181.388 (6)
C4—H40.9300C17—H170.9300
C5—C61.507 (5)C18—H180.9300
C6—C71.374 (5)C19—C201.441 (5)
O3—Cd1—O5149.20 (11)C8—C6—C5120.8 (3)
O3—Cd1—O289.18 (9)C6—C7—C8ii121.0 (3)
O5—Cd1—O280.46 (10)C6—C7—H7119.5
O3—Cd1—N293.93 (10)C8ii—C7—H7119.5
O5—Cd1—N2113.58 (11)C7ii—C8—C6120.1 (3)
O2—Cd1—N2136.37 (9)C7ii—C8—H8119.9
O3—Cd1—N192.49 (10)C6—C8—H8119.9
O5—Cd1—N184.71 (10)N1—C9—C10122.7 (4)
O2—Cd1—N1153.45 (10)N1—C9—H9118.6
N2—Cd1—N169.96 (9)C10—C9—H9118.6
O3—Cd1—O1102.64 (9)C11—C10—C9119.5 (4)
O5—Cd1—O194.69 (10)C11—C10—H10120.3
O2—Cd1—O154.27 (9)C9—C10—H10120.3
N2—Cd1—O182.74 (9)C10—C11—C12120.2 (4)
N1—Cd1—O1149.65 (9)C10—C11—H11119.9
C1—O1—Cd188.0 (2)C12—C11—H11119.9
C1—O2—Cd195.7 (2)C11—C12—C20117.0 (3)
C5—O3—Cd1103.3 (2)C11—C12—C13123.6 (3)
Cd1—O5—H5A116 (3)C20—C12—C13119.4 (3)
Cd1—O5—H5B122 (3)C14—C13—C12121.4 (4)
H5A—O5—H5B104 (4)C14—C13—H13119.3
C9—N1—C20118.2 (3)C12—C13—H13119.3
C9—N1—Cd1125.8 (2)C13—C14—C15120.6 (4)
C20—N1—Cd1116.0 (2)C13—C14—H14119.7
C18—N2—C19117.8 (3)C15—C14—H14119.7
C18—N2—Cd1125.2 (3)C19—C15—C16116.9 (4)
C19—N2—Cd1116.6 (2)C19—C15—C14120.3 (4)
O2—C1—O1122.0 (3)C16—C15—C14122.8 (4)
O2—C1—C2118.5 (3)C17—C16—C15119.8 (4)
O1—C1—C2119.5 (3)C17—C16—H16120.1
C3—C2—C4118.9 (3)C15—C16—H16120.1
C3—C2—C1120.2 (3)C16—C17—C18119.2 (4)
C4—C2—C1120.9 (3)C16—C17—H17120.4
C2—C3—C4i120.7 (3)C18—C17—H17120.4
C2—C3—H3119.6N2—C18—C17123.4 (4)
C4i—C3—H3119.6N2—C18—H18118.3
C3i—C4—C2120.3 (3)C17—C18—H18118.3
C3i—C4—H4119.8N2—C19—C15122.9 (3)
C2—C4—H4119.8N2—C19—C20118.2 (3)
O3—C5—O4123.6 (3)C15—C19—C20118.9 (3)
O3—C5—C6117.0 (3)N1—C20—C12122.4 (3)
O4—C5—C6119.3 (3)N1—C20—C19118.2 (3)
C7—C6—C8118.9 (3)C12—C20—C19119.3 (3)
C7—C6—C5120.3 (3)
O3—Cd1—O1—C180.9 (2)Cd1—C1—C2—C3−7(3)
O5—Cd1—O1—C1−73.5 (2)O2—C1—C2—C4−158.3 (4)
O2—Cd1—O1—C11.20 (19)O1—C1—C2—C422.1 (5)
N2—Cd1—O1—C1173.3 (2)Cd1—C1—C2—C4173 (3)
N1—Cd1—O1—C1−161.0 (2)C4—C2—C3—C4i−0.6 (6)
O3—Cd1—O2—C1−107.5 (2)C1—C2—C3—C4i179.6 (3)
O5—Cd1—O2—C1101.7 (2)C3—C2—C4—C3i0.6 (6)
N2—Cd1—O2—C1−12.6 (3)C1—C2—C4—C3i−179.6 (3)
N1—Cd1—O2—C1158.6 (2)Cd1—O3—C5—O410.6 (4)
O1—Cd1—O2—C1−1.2 (2)Cd1—O3—C5—C6−166.9 (2)
O5—Cd1—O3—C5−20.9 (3)O3—C5—C6—C7−22.1 (5)
O2—Cd1—O3—C5−90.5 (2)O4—C5—C6—C7160.3 (3)
N2—Cd1—O3—C5133.0 (2)O3—C5—C6—C8154.9 (4)
N1—Cd1—O3—C562.9 (2)O4—C5—C6—C8−22.7 (5)
O1—Cd1—O3—C5−143.6 (2)C8—C6—C7—C8ii0.2 (7)
C1—Cd1—O3—C5−116.4 (2)C5—C6—C7—C8ii177.3 (4)
O3—Cd1—N1—C9−91.3 (3)C7—C6—C8—C7ii−0.2 (7)
O5—Cd1—N1—C957.9 (3)C5—C6—C8—C7ii−177.2 (3)
O2—Cd1—N1—C91.8 (4)C20—N1—C9—C100.2 (6)
N2—Cd1—N1—C9175.4 (3)Cd1—N1—C9—C10177.2 (3)
O1—Cd1—N1—C9148.2 (3)N1—C9—C10—C11−1.3 (7)
C1—Cd1—N1—C984.5 (7)C9—C10—C11—C120.9 (7)
O3—Cd1—N1—C2085.8 (2)C10—C11—C12—C200.6 (6)
O5—Cd1—N1—C20−125.0 (2)C10—C11—C12—C13−179.7 (4)
O2—Cd1—N1—C20178.9 (2)C11—C12—C13—C14−178.6 (4)
N2—Cd1—N1—C20−7.5 (2)C20—C12—C13—C141.0 (6)
O1—Cd1—N1—C20−34.7 (3)C12—C13—C14—C152.0 (7)
C1—Cd1—N1—C20−98.4 (6)C13—C14—C15—C19−2.7 (7)
O3—Cd1—N2—C1890.0 (3)C13—C14—C15—C16175.1 (5)
O5—Cd1—N2—C18−104.2 (3)C19—C15—C16—C17−0.4 (7)
O2—Cd1—N2—C18−2.9 (4)C14—C15—C16—C17−178.3 (5)
N1—Cd1—N2—C18−178.7 (4)C15—C16—C17—C18−0.6 (9)
O1—Cd1—N2—C18−12.2 (3)C19—N2—C18—C170.1 (7)
C1—Cd1—N2—C18−8.9 (4)Cd1—N2—C18—C17−172.5 (4)
O3—Cd1—N2—C19−82.7 (3)C16—C17—C18—N20.8 (9)
O5—Cd1—N2—C1983.1 (3)C18—N2—C19—C15−1.2 (6)
O2—Cd1—N2—C19−175.6 (2)Cd1—N2—C19—C15172.1 (3)
N1—Cd1—N2—C198.6 (2)C18—N2—C19—C20177.8 (4)
O1—Cd1—N2—C19175.1 (3)Cd1—N2—C19—C20−9.0 (4)
C1—Cd1—N2—C19178.4 (2)C16—C15—C19—N21.3 (6)
Cd1—O2—C1—O12.3 (4)C14—C15—C19—N2179.2 (4)
Cd1—O2—C1—C2−177.3 (3)C16—C15—C19—C20−177.6 (4)
Cd1—O1—C1—O2−2.1 (3)C14—C15—C19—C200.3 (6)
Cd1—O1—C1—C2177.5 (3)C9—N1—C20—C121.5 (5)
O3—Cd1—C1—O274.0 (2)Cd1—N1—C20—C12−175.9 (3)
O5—Cd1—C1—O2−75.3 (2)C9—N1—C20—C19−176.7 (3)
N2—Cd1—C1—O2170.8 (2)Cd1—N1—C20—C196.0 (4)
N1—Cd1—C1—O2−101.9 (6)C11—C12—C20—N1−1.9 (5)
O1—Cd1—C1—O2177.8 (3)C13—C12—C20—N1178.5 (3)
O3—Cd1—C1—O1−103.9 (2)C11—C12—C20—C19176.3 (3)
O5—Cd1—C1—O1106.8 (2)C13—C12—C20—C19−3.4 (5)
O2—Cd1—C1—O1−177.8 (3)N2—C19—C20—N11.9 (5)
N2—Cd1—C1—O1−7.1 (2)C15—C19—C20—N1−179.1 (3)
N1—Cd1—C1—O180.3 (6)N2—C19—C20—C12−176.3 (3)
O2—C1—C2—C321.6 (5)C15—C19—C20—C122.7 (5)
O1—C1—C2—C3−158.0 (4)

Symmetry codes: (i) −x+3, −y, −z+1; (ii) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O1iii0.81 (4)1.91 (4)2.697 (4)163 (4)
O5—H5B···O4iv0.75 (4)2.07 (4)2.782 (4)159 (4)

Symmetry codes: (iii) −x+2, −y, −z+1; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2152).

References

  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin,USA.
  • Go, Y., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem.43, 5360–5367. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, D., Cao, R., Liang, Y., Shi, Q., Su, W. & Hong, M. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography