PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m86.
Published online 2008 December 17. doi:  10.1107/S1600536808041809
PMCID: PMC2967919

catena-Poly[copper(I)-bis(μ-trifluoro­methane­sulfonato-κ2 O:O′)-copper(I)-bis(μ-trimethyl trithio­phosphite)-κ2 P:S2 S:P]

Abstract

The title compound, [Cu2(CF3SO3)2(C3H9PS3)2]n, crystallizes as infinite chains in which two trimethyl trithio­phosphite ligands and two trifluoro­methane­sulfonate anions bridge the essentially tetra­hedrally coordinated CuI ions in an alternating fashion. The P and one S atom of each trimethyl trithio­phosphite ligand are employed for coordination. The mol­ecular structure exhibits the rare motif of copper(I) bridged by two trifluoro­methane­sulfonate anions generating eight-membered rings.

Related literature

For related structures, see: Blue et al. (2006 [triangle]); Kataeva et al. (1995 [triangle], 2000 [triangle]); Knight & Keller (2006 [triangle]); Kursheva et al. (2003 [triangle]); Stibrany & Potenza (2007 [triangle]); Stibrany et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m86-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CF3SO3)2(C3H9PS3)2]
  • M r = 769.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m86-efi1.jpg
  • a = 8.8347 (15) Å
  • b = 18.306 (3) Å
  • c = 8.1731 (14) Å
  • β = 102.674 (3)°
  • V = 1289.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.49 mm−1
  • T = 100 (2) K
  • 0.10 × 0.08 × 0.04 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.789, T max = 0.907
  • 7349 measured reflections
  • 2612 independent reflections
  • 2425 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.075
  • S = 1.04
  • 2612 reflections
  • 148 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: X-SEED.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041809/lh2742sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041809/lh2742Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Research Foundation (NRF) of South Africa for financial support.

supplementary crystallographic information

Comment

The structure of the title compound (I), consists of chains of tetrahedrally coordinated CuI centres that are bridged by two P(SMe)3 ligands in a κ2P:S-fashion, forming 6-membered rings in the chair conformation. Two trifluoromethanesulfonate anions each employ two oxygen atoms to bridge two copper atoms, yielding 8-membered rings. The copper atoms thus form spiro-junctions between the alternating 6- and 8-membered rings generated by the trithiophosphite and trifluoromethanesulfonate ligands; a point of symmetry is located in the centre of each ring.

The crystal structure of (I) therefore is related to compounds of the [CuX{P(SR)3}]n (R = alkyl, phenyl; X = Cl, Br, I, SCN) type which also show the same arrangement of 6-membered rings formed by two trithiophosphite ligands where the copper centres also form spiro-junctions to the 4-membered (8-membered) rings generated by two bridging (pseudo)halide (thiocyanate) anions (Kataeva et al., 1995; Kataeva et al., 2000). Cu—P and Cu—S bond lengths in (I) are shorter than in most halide analogues. This difference might be caused by the harder and more electron-withdrawing nature of the trifluoromethanesulfonate counter-anion. The average Cu—P bond length in the halide complexes is 2.22 Å and the average Cu—S distance 2.39 Å. An exception is the cluster formed by triisopropyltrithiophosphite with 4 CuCl units [Cu—P 2.207 (7) Å, Cu—S 2.185 (8) Å] that also might exert a similar electron-withdrawing effect on the ligand (Kursheva et al., 2003).

Tetrahydrofuran (thf), from which (I) was crystallized, does not act as a ligand towards CuI in the present structure. This behaviour of (I) is in contrast to the complex [Cu(CH3CN)2(PPh3)2]CF3SO3 which spontaneously yields crystals of [Cu(CF3SO3)(PPh3)2(thf)] when dissolved in thf (Knight & Keller, 2006). In the latter complex, the Cu—O(thf) bond is shorter [2.125 (2) Å] than the Cu—O(CF3SO3) bond [2.168 (2) Å] in (I).

Two copper centres bridged by two trifluoromethanesulfonate anions, each employing two oxygen atoms for coordination, is a very rare motif. Only two other structures of CuI (Stibrany et al., 2006; Stibrany & Potenza, 2007) and one of CuII (Blue et al., 2006) are known that exhibit such an arrangement. The former examples comprise tetrahedral CuI centres with the remaining sites occupied by phosphine or imine donors where the Cu—O distances of the former structure [2.111 (4) and 2.189 (4) Å] are comparable to those in (I) whereas such bonds are longer [2.336 (6) and 2.350 (7) Å] in the latter structure.

Experimental

trimethyl trithiophosphite (202 mg, 1.2 mmol) was dissolved in thf (20 ml) and [Cu(CH3CN)4]CF3SO3 (440 mg, 1.2 mmol) added. After 15 min. a slight turbidity in the colourless solution was observed and after 1.5 h all volatiles were removed in vacuo affording a yellowish oil. Trituration with diethyl ether (ca 20 ml) and twice with ca 20 ml toluene caused the oil to solidify furnishing the colourless microcrystalline product in quantitative yield. A suitable crystal for X-ray diffraction was grown from thf layered with pentane.

NMR (CD3CN): 1H (300 MHz): δ 2.31 p.p.m. (d, 3JPH 12.1 Hz, 1JCH 155 Hz); 13C{1H} (75 MHz): δ 14.2 p.p.m. (d, 2JPC 10.1 Hz); 31P{1H} (121 MHz): δ 142.1 p.p.m. (s).

IR (cm-1): 2999 (CH3), 2924 (CH3), 1605, 1421 (CH3), 1284 (CF3SO3), 1120 (CF3SO3), 1169 (CF3SO3), 1049, 1019, 962, 764, 734, 668, 626 and 577.

FAB-MS in nitrobenzyl alcohol matrix (m/z): 385 (10%, M+H), 401 (15).

Refinement

All H atoms were positioned geometrically (C—H = 0.98 Å) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.5 times Ueq(C).

Figures

Fig. 1.
Part of an infinite chain formed by (I), unlabeled atoms are related by one unit cell translation along the a axis; ellipsoids are drawn at the 50% probability level. Symmetry operators: (i) = -x, -y + 1, -z + 1; (ii) = -x + 1, -y + 1, -z + 1.

Crystal data

[Cu2(CF3SO3)2(C3H9PS3)2]F(000) = 768
Mr = 769.78Dx = 1.982 Mg m3
Monoclinic, P21/cMelting point: 413 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8347 (15) ÅCell parameters from 4358 reflections
b = 18.306 (3) Åθ = 2.4–26.3°
c = 8.1731 (14) ŵ = 2.49 mm1
β = 102.674 (3)°T = 100 K
V = 1289.6 (4) Å3Block, colourless
Z = 20.10 × 0.08 × 0.04 mm

Data collection

Bruker APEX CCD area-detector diffractometer2612 independent reflections
Radiation source: fine-focus sealed tube2425 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −11→11
Tmin = 0.789, Tmax = 0.907k = −14→22
7349 measured reflectionsl = −9→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0393P)2 + 1.5175P] where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.20918 (3)0.512402 (17)0.47201 (4)0.01851 (11)
P10.02869 (7)0.58055 (3)0.31859 (8)0.01703 (15)
S1−0.19119 (7)0.52875 (3)0.26779 (8)0.01850 (14)
S20.03767 (8)0.61564 (4)0.07703 (8)0.02558 (16)
S30.00504 (8)0.68172 (3)0.42847 (8)0.02322 (16)
S40.54023 (7)0.58664 (3)0.66022 (8)0.01807 (15)
F10.66632 (19)0.70162 (9)0.8235 (2)0.0303 (4)
F20.5529 (3)0.72252 (11)0.5687 (2)0.0546 (6)
F30.4170 (2)0.70427 (11)0.7523 (3)0.0495 (5)
O10.4142 (2)0.57889 (10)0.5143 (2)0.0236 (4)
O20.6913 (2)0.57583 (11)0.6216 (3)0.0357 (5)
O30.5166 (2)0.55310 (12)0.8091 (2)0.0346 (5)
C1−0.3285 (3)0.60237 (15)0.2002 (4)0.0255 (6)
H1A−0.31810.63900.28950.038*
H1B−0.43430.58270.17560.038*
H1C−0.30730.62520.09910.038*
C20.2468 (3)0.6205 (2)0.1033 (4)0.0350 (7)
H2A0.29070.65010.20240.052*
H2B0.27200.64300.00380.052*
H2C0.29060.57120.11800.052*
C30.0397 (3)0.65795 (15)0.6490 (3)0.0260 (6)
H3A−0.04360.62590.66810.039*
H3B0.04200.70250.71590.039*
H3C0.13940.63260.68210.039*
C40.5454 (3)0.68447 (15)0.7022 (4)0.0253 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01952 (17)0.01793 (18)0.01786 (18)0.00236 (11)0.00363 (12)0.00126 (12)
S10.0200 (3)0.0165 (3)0.0185 (3)0.0003 (2)0.0033 (2)0.0018 (2)
S20.0240 (3)0.0364 (4)0.0163 (3)−0.0004 (3)0.0043 (3)0.0077 (3)
S30.0312 (3)0.0145 (3)0.0231 (3)0.0005 (3)0.0041 (3)0.0012 (2)
S40.0199 (3)0.0153 (3)0.0187 (3)−0.0015 (2)0.0036 (2)−0.0016 (2)
P10.0196 (3)0.0170 (3)0.0146 (3)0.0008 (2)0.0039 (2)0.0022 (2)
F10.0341 (9)0.0235 (8)0.0320 (9)−0.0079 (7)0.0045 (7)−0.0098 (7)
F20.0967 (17)0.0278 (10)0.0348 (11)−0.0160 (10)0.0046 (11)0.0099 (8)
F30.0342 (10)0.0369 (11)0.0778 (15)0.0048 (8)0.0130 (10)−0.0267 (11)
O10.0255 (10)0.0248 (10)0.0189 (9)−0.0059 (8)0.0015 (7)−0.0002 (7)
O20.0234 (10)0.0304 (11)0.0537 (14)−0.0018 (8)0.0095 (9)−0.0214 (10)
O30.0457 (13)0.0321 (11)0.0218 (10)−0.0161 (10)−0.0014 (9)0.0064 (9)
C10.0225 (13)0.0222 (14)0.0294 (15)0.0042 (10)0.0002 (11)0.0080 (11)
C20.0248 (14)0.056 (2)0.0254 (15)−0.0064 (14)0.0072 (11)0.0069 (14)
C30.0373 (15)0.0226 (14)0.0176 (13)0.0004 (11)0.0053 (11)−0.0044 (11)
C40.0316 (14)0.0176 (13)0.0256 (14)0.0007 (11)0.0039 (11)−0.0006 (11)

Geometric parameters (Å, °)

Cu1—S1i2.2943 (8)S4—O31.419 (2)
Cu1—P12.1895 (7)F1—C41.326 (3)
Cu1—O12.1466 (18)F2—C41.308 (3)
Cu1—O2ii2.065 (2)F3—C41.338 (3)
P1—S12.1192 (9)C1—H1A0.9800
P1—S22.0941 (9)C1—H1B0.9800
P1—S32.0886 (10)C1—H1C0.9800
S1—C11.816 (3)C2—H2A0.9800
S2—C21.815 (3)C2—H2B0.9800
S3—C31.814 (3)C2—H2C0.9800
S4—C41.822 (3)C3—H3A0.9800
S4—O11.4490 (19)C3—H3B0.9800
S4—O21.451 (2)C3—H3C0.9800
P1—Cu1—S1i121.88 (3)F1—C4—S4110.88 (19)
P1—S1—Cu1i102.25 (3)F2—C4—S4111.7 (2)
S4—O1—Cu1131.05 (11)F3—C4—S4109.64 (19)
S4—O2—Cu1ii132.38 (13)F1—C4—F3107.7 (2)
O1—Cu1—S1i105.35 (5)F2—C4—F1108.5 (2)
O1—Cu1—P1104.59 (6)F2—C4—F3108.2 (2)
O2ii—Cu1—S1i102.03 (7)S1—C1—H1A109.5
O2ii—Cu1—P1123.32 (7)S1—C1—H1B109.5
O2ii—Cu1—O195.18 (8)S1—C1—H1C109.5
C1—S1—Cu1i110.36 (10)H1A—C1—H1B109.5
S1—P1—Cu1112.23 (4)H1A—C1—H1C109.5
S2—P1—Cu1122.77 (4)H1B—C1—H1C109.5
S3—P1—Cu1112.83 (4)S2—C2—H2A109.5
S2—P1—S1100.09 (4)S2—C2—H2B109.5
S3—P1—S1107.89 (4)S2—C2—H2C109.5
S3—P1—S299.29 (4)H2A—C2—H2B109.5
C1—S1—P1104.48 (9)H2A—C2—H2C109.5
C2—S2—P198.73 (10)H2B—C2—H2C109.5
C3—S3—P1101.75 (9)S3—C3—H3A109.5
O1—S4—O2112.64 (13)S3—C3—H3B109.5
O3—S4—O1115.63 (12)S3—C3—H3C109.5
O3—S4—O2116.31 (14)H3A—C3—H3B109.5
O1—S4—C4103.54 (12)H3A—C3—H3C109.5
O2—S4—C4100.87 (13)H3B—C3—H3C109.5
O3—S4—C4105.44 (13)
Cu1—P1—S1—Cu1i47.73 (4)O3—S4—O1—Cu1−10.1 (2)
Cu1—P1—S1—C1162.81 (10)O3—S4—O2—Cu1ii75.6 (2)
Cu1—P1—S2—C2−30.47 (13)C4—S4—O1—Cu1−124.88 (16)
Cu1—P1—S3—C3−36.26 (11)C4—S4—O2—Cu1ii−170.98 (18)
S1i—Cu1—P1—S1−58.38 (5)S1—P1—S2—C2−155.34 (12)
S1i—Cu1—P1—S2−177.61 (4)S1—P1—S3—C388.30 (10)
S1i—Cu1—P1—S363.76 (5)S2—P1—S1—C1−65.38 (11)
S1i—Cu1—O1—S413.26 (16)S2—P1—S3—C3−167.85 (10)
P1—Cu1—O1—S4142.85 (14)S3—P1—S1—C137.90 (11)
S2—P1—S1—Cu1i179.54 (3)S3—P1—S2—C294.47 (12)
S3—P1—S1—Cu1i−77.18 (4)O1—S4—C4—F1−173.61 (18)
O1—Cu1—P1—S1−177.33 (6)O1—S4—C4—F2−52.4 (2)
O1—Cu1—P1—S263.44 (7)O1—S4—C4—F367.5 (2)
O1—Cu1—P1—S3−55.19 (6)O2—S4—C4—F1−56.9 (2)
O2ii—Cu1—P1—S176.24 (8)O2—S4—C4—F264.3 (2)
O2ii—Cu1—P1—S2−42.98 (9)O2—S4—C4—F3−175.7 (2)
O2ii—Cu1—P1—S3−161.62 (8)O3—S4—C4—F164.5 (2)
O2ii—Cu1—O1—S4−90.74 (16)O3—S4—C4—F2−174.3 (2)
O1—S4—O2—Cu1ii−61.2 (2)O3—S4—C4—F3−54.3 (2)
O2—S4—O1—Cu1127.02 (15)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2742).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Blue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem.691, 5988–5993.
  • Bruker (2002). SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kataeva, O. N., Krivolapov, D. B., Gubaidullin, A. T., Litvinov, I. A., Kursheva, L. I. & Katsyuba, S. A. (2000). J. Mol. Struct.554, 127–140.
  • Kataeva, O. N., Litvinov, I. A., Naumov, V. A., Kursheva, L. I. & Batyeva, E. S. (1995). Inorg. Chem.34, 5171–5174.
  • Knight, D. A. & Keller, S. W. (2006). J. Chem. Crystallogr.36, 531–542.
  • Kursheva, L. I., Kataeva, O. N., Gubaidullin, A. T., Khasyanzyanova, F. S., Vakhitov, E. V., Krivolapov, D. B. & Batyeva, E. S. (2003). Russ. J. Gen. Chem.73, 1516–1521.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stibrany, R. T. & Potenza, J. A. (2007). Private communication (Refcode: VIFSEJ). CCDC, Cambridge, England.
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2006). Private communication (Refcode: CEJGEE). CCDC, Cambridge, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography