PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m82–m83.
Published online 2008 December 17. doi:  10.1107/S1600536808041986
PMCID: PMC2967917

Tetra­kis(μ-2-chloro-4-nitro­benzoato-κ2 O:O′)bis­[aqua­copper(II)]

Abstract

In the title binuclear copper(II) complex, [Cu2(C7H3ClNO4)4(H2O)2], each of the two independent CuII center is five-coordinated by four O atoms of the carboxyl­ate groups in the basal plane and one O atom of a water mol­ecule in the apical position, in a distorted square-pyramidal geometry. The Cu—Cu distance is 2.6458 (4) Å. In the crystal structure, the dinuclear units are linked into a three-dimensional network by O—H(...)O, C—H(...)O and C—H(...)Cl hydrogen bonds. One of the Cl atoms is disordered over two positions with occupancies of 0.650 (2) and 0.350 (2).

Related literature

For general background, see: Balaraman et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Kabbani et al. (2004 [triangle]); Stachová et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m82-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H3ClNO4)4(H2O)2]
  • M r = 965.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m82-efi1.jpg
  • a = 7.6721 (2) Å
  • b = 15.2938 (4) Å
  • c = 14.5653 (3) Å
  • β = 102.327 (1)°
  • V = 1669.63 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 293 (2) K
  • 0.76 × 0.19 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.360, T max = 0.844
  • 61401 measured reflections
  • 18745 independent reflections
  • 13379 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.121
  • S = 1.11
  • 18745 reflections
  • 516 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 1.75 e Å−3
  • Δρmin = −0.85 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 8242 Friedel pairs
  • Flack parameter: 0.526 (8)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041986/ci2732sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041986/ci2732Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

In our quest to study the biological properties of CuII complexes, we have managed to prepare several water soluble CuII complexes. CuII complexes have been known to exhibit DNA cleavage activity in vitro (Balaraman et al., 2006). Herein, we report the preparation and crystal structure of the title compound.

The coordination geometry around each CuII atom is square-pyramidal. Four O atoms, one each from the carboxylate groups of four organic ligands, form the basal plane with an average Cu—O bond distance of 1.968 (2) Å. The O atom of the water molecules lie in the apical position with an average Cu—O distance of 2.148 (2) Å. The Cu1 and Cu2 atoms are slightly displaced from the corresponding basal plane by 0.2037 (2) and 0.1959 (2) Å, respectively. The Cu1—Cu2 distance is 2.6458 (4) Å. Similar characteristics of the copper atom were also reported by Kabbani et al. (2004) and Stachová et al. (2004).

Bond lengths in the ligand show normal values (Allen et al., 1987). Dihedral angles between nitro groups and benzene rings are: 6.3 (4) [C1-C6/O9,O10,N1], 16.0 (3) [C8-C13/O11,O12,N2], 6.5 (4) [C15-C20/O13,O14,N3] and 19.9 (3) Å [C22-C27/O15,O16,N4].

In the crystal structure, O—H···O, C—H···O and C—H···Cl intermolecular interactions (Table 2) form a three-dimensional network (Fig.2).

Experimental

An ethanol solution (50 ml) of 2-chloro-4-nitrobenzoic acid (4.84 g, 0.024 mol) was added to a solution of copper(II) sulfate pentahydrate (3.00 g, 0.012 mol) in ethanol (50 ml). This mixture was then stirred and refluxed and left to cool down to room temperature. After a few days of slow evaporation, blue crystals which are suitable for X-ray analysis were collected.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the O atom, with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and Uiso(H) = 1.5Ueq(C). Atom Cl3 attached to one of the phenyl rings is disordered over two positions with occupancies of 0.650 (2) and 0.350 (2). The structure shows a pseudo centre of symmetry. It can be solved and refined in the space group P21/c but the final R value (0.098) is large. The highest residual electron density peak is located at 1.02 Å from Cl3A and the deepest hole is located at 0.63Å from Cu1. The crystal is a twin with BASF = 0.526 (8).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are given.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dotted lines. Only the major disorder component is shown.

Crystal data

[Cu2(C7H3ClNO4)4(H2O)2]F(000) = 964
Mr = 965.33Dx = 1.920 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 7272 reflections
a = 7.6721 (2) Åθ = 2.7–38.1°
b = 15.2938 (4) ŵ = 1.69 mm1
c = 14.5653 (3) ÅT = 293 K
β = 102.327 (1)°Block, blue
V = 1669.63 (7) Å30.76 × 0.19 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer18745 independent reflections
Radiation source: fine-focus sealed tube13379 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 40.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→13
Tmin = 0.360, Tmax = 0.844k = −27→27
61401 measured reflectionsl = −26→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.121w = 1/[σ2(Fo2) + (0.0545P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
18745 reflectionsΔρmax = 1.75 e Å3
516 parametersΔρmin = −0.85 e Å3
2 restraintsAbsolute structure: Flack (1983), 8242 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.526 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.12722 (3)0.783035 (19)0.823603 (19)0.01681 (6)
Cu20.43478 (3)0.72693 (2)0.791272 (19)0.01749 (6)
Cl10.09737 (12)0.49165 (5)0.90348 (5)0.02859 (15)
Cl20.26779 (10)0.78853 (4)1.14338 (5)0.02285 (13)
Cl3A0.51796 (19)0.94108 (7)1.07198 (7)0.0375 (3)0.650 (2)
H19A0.49681.03060.76210.045*0.650 (2)
Cl3B0.4619 (3)1.00985 (13)0.71300 (12)0.0219 (4)0.350 (2)
H15A0.53760.96931.03670.026*0.350 (2)
Cl40.28627 (11)0.71075 (4)0.47526 (5)0.02455 (14)
O10.2962 (3)0.62123 (13)0.74654 (14)0.0232 (4)
O20.0341 (3)0.66738 (13)0.77463 (14)0.0208 (4)
O30.4781 (3)0.67950 (13)0.91825 (14)0.0231 (4)
O40.2187 (3)0.72835 (14)0.94666 (15)0.0242 (4)
O50.2647 (3)0.89022 (14)0.86431 (15)0.0245 (4)
O60.5291 (3)0.84210 (12)0.84230 (14)0.0216 (4)
O70.0803 (3)0.82590 (13)0.69431 (13)0.0205 (4)
O80.3478 (3)0.78407 (13)0.66932 (15)0.0234 (4)
O9−0.1850 (3)0.25394 (14)0.55559 (15)0.0271 (4)
O10−0.1868 (4)0.22569 (14)0.70107 (18)0.0326 (5)
O110.6789 (3)0.47095 (14)1.34252 (16)0.0284 (4)
O120.5010 (4)0.55861 (16)1.39558 (16)0.0381 (6)
O130.7524 (3)1.25825 (14)1.05715 (16)0.0295 (4)
O140.7563 (4)1.28442 (14)0.91156 (19)0.0354 (6)
O15−0.1241 (3)1.02192 (14)0.26224 (15)0.0282 (4)
O160.0681 (4)0.93987 (16)0.21492 (17)0.0414 (7)
N1−0.1544 (4)0.27333 (14)0.63933 (19)0.0218 (5)
N20.5679 (3)0.52972 (16)1.33285 (17)0.0239 (5)
N30.7216 (4)1.23743 (17)0.9736 (2)0.0250 (5)
N4−0.0059 (3)0.96664 (15)0.27622 (17)0.0224 (5)
C10.0091 (4)0.50152 (19)0.6236 (2)0.0243 (5)
H1A0.02220.54240.57830.029*
C2−0.0583 (4)0.41837 (18)0.59602 (19)0.0218 (5)
H2A−0.08930.40280.53290.026*
C3−0.0775 (4)0.35938 (17)0.66677 (19)0.0198 (5)
C4−0.0312 (4)0.38101 (17)0.76208 (19)0.0204 (5)
H4A−0.04560.34090.80780.024*
C50.0357 (4)0.46238 (18)0.78645 (18)0.0197 (5)
C60.0573 (3)0.52397 (17)0.71939 (18)0.0178 (4)
C70.1335 (3)0.61089 (17)0.74809 (18)0.0182 (4)
C80.4969 (4)0.56868 (18)1.0754 (2)0.0223 (5)
H8A0.52260.54191.02250.027*
C90.5457 (4)0.52623 (19)1.1623 (2)0.0235 (5)
H9A0.60040.47171.16750.028*
C100.5096 (4)0.56815 (17)1.23927 (19)0.0197 (5)
C110.4237 (4)0.64803 (17)1.23367 (19)0.0199 (5)
H11A0.40040.67461.28720.024*
C120.3726 (4)0.68801 (17)1.14587 (19)0.0184 (5)
C130.4121 (3)0.64894 (18)1.06542 (19)0.0193 (5)
C140.3656 (3)0.69000 (18)0.97047 (18)0.0194 (5)
C150.5526 (4)1.0118 (2)0.9896 (2)0.0254 (6)
C160.6210 (4)1.0937 (2)1.0165 (2)0.0267 (6)
H16A0.65171.10951.07950.032*
C170.6422 (4)1.15070 (18)0.94707 (19)0.0208 (5)
C180.5973 (4)1.12999 (18)0.8526 (2)0.0222 (5)
H18A0.61251.17030.80720.027*
C190.5287 (4)1.04701 (19)0.8275 (2)0.0239 (5)
C200.5060 (4)0.98790 (18)0.8952 (2)0.0217 (5)
C210.4268 (4)0.89879 (19)0.86537 (19)0.0205 (5)
C220.0576 (4)0.93515 (17)0.5342 (2)0.0224 (5)
H22A0.03030.96320.58600.027*
C230.0106 (4)0.97402 (17)0.4471 (2)0.0208 (5)
H23A−0.04511.02830.43940.025*
C240.0497 (4)0.92867 (17)0.37110 (18)0.0190 (5)
C250.1356 (4)0.84924 (16)0.37889 (19)0.0197 (5)
H25A0.16000.82100.32650.024*
C260.1848 (4)0.81247 (17)0.46865 (18)0.0183 (5)
C270.1456 (3)0.85452 (17)0.54673 (18)0.0172 (4)
C280.1957 (4)0.81801 (16)0.64518 (18)0.0180 (4)
O1W0.6588 (3)0.69210 (14)0.73336 (14)0.0239 (4)
H1W10.62560.67950.67540.036*
H2W10.77160.68690.74820.036*
O2W−0.0975 (3)0.81661 (13)0.88410 (14)0.0207 (4)
H1W2−0.12400.78390.92360.031*
H2W2−0.20890.82730.86760.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01168 (13)0.02709 (15)0.01187 (14)0.00096 (10)0.00296 (10)−0.00209 (11)
Cu20.01168 (13)0.02907 (15)0.01193 (14)0.00102 (10)0.00297 (10)−0.00302 (11)
Cl10.0377 (4)0.0294 (3)0.0179 (3)0.0038 (3)0.0042 (3)0.0002 (3)
Cl20.0288 (4)0.0221 (3)0.0180 (3)0.0003 (2)0.0059 (3)−0.0009 (2)
Cl3A0.0666 (8)0.0300 (5)0.0146 (4)−0.0177 (5)0.0059 (4)0.0024 (4)
Cl3B0.0266 (10)0.0296 (10)0.0077 (7)0.0037 (7)−0.0005 (6)−0.0008 (6)
Cl40.0340 (4)0.0204 (3)0.0189 (3)0.0019 (2)0.0048 (3)−0.0025 (2)
O10.0162 (9)0.0313 (10)0.0243 (10)−0.0004 (7)0.0089 (7)−0.0065 (7)
O20.0155 (8)0.0259 (9)0.0214 (10)0.0022 (6)0.0050 (7)−0.0006 (7)
O30.0174 (10)0.0350 (11)0.0181 (10)0.0051 (7)0.0061 (7)0.0018 (8)
O40.0164 (10)0.0409 (12)0.0156 (10)0.0049 (7)0.0037 (8)0.0009 (7)
O50.0152 (8)0.0335 (10)0.0250 (11)−0.0023 (7)0.0049 (7)−0.0111 (8)
O60.0140 (8)0.0286 (9)0.0221 (10)−0.0005 (6)0.0033 (7)−0.0064 (7)
O70.0197 (10)0.0294 (10)0.0129 (9)0.0013 (7)0.0048 (7)−0.0006 (7)
O80.0142 (9)0.0408 (12)0.0142 (10)0.0030 (6)0.0007 (7)0.0011 (7)
O90.0290 (11)0.0311 (10)0.0216 (10)0.0008 (8)0.0063 (8)−0.0050 (8)
O100.0419 (15)0.0304 (11)0.0262 (12)−0.0101 (8)0.0089 (11)0.0022 (8)
O110.0216 (10)0.0359 (11)0.0266 (11)0.0012 (7)0.0028 (8)0.0083 (8)
O120.0580 (17)0.0405 (13)0.0205 (11)0.0081 (11)0.0190 (11)0.0083 (9)
O130.0337 (12)0.0340 (11)0.0215 (11)−0.0052 (9)0.0077 (8)−0.0077 (9)
O140.0453 (16)0.0361 (13)0.0281 (13)−0.0081 (9)0.0153 (12)0.0046 (9)
O150.0242 (11)0.0353 (11)0.0231 (10)−0.0008 (8)0.0009 (8)0.0066 (8)
O160.076 (2)0.0343 (12)0.0192 (11)0.0149 (12)0.0221 (12)0.0073 (9)
N10.0219 (11)0.0263 (11)0.0188 (11)0.0021 (7)0.0075 (9)−0.0002 (8)
N20.0272 (13)0.0280 (11)0.0172 (11)−0.0048 (8)0.0063 (9)0.0034 (9)
N30.0198 (12)0.0307 (11)0.0258 (13)0.0020 (8)0.0081 (10)0.0002 (10)
N40.0266 (12)0.0240 (11)0.0167 (10)−0.0054 (8)0.0048 (9)0.0034 (8)
C10.0299 (14)0.0268 (12)0.0173 (13)−0.0025 (9)0.0077 (10)−0.0023 (9)
C20.0277 (13)0.0249 (12)0.0141 (11)−0.0001 (9)0.0077 (9)−0.0012 (9)
C30.0203 (12)0.0246 (12)0.0157 (11)0.0012 (8)0.0063 (9)−0.0028 (9)
C40.0220 (12)0.0248 (12)0.0155 (12)0.0032 (9)0.0067 (9)0.0007 (9)
C50.0184 (11)0.0288 (12)0.0114 (11)0.0029 (8)0.0024 (8)−0.0024 (9)
C60.0138 (10)0.0278 (12)0.0129 (11)0.0028 (8)0.0052 (8)−0.0017 (8)
C70.0160 (11)0.0258 (12)0.0125 (11)0.0015 (8)0.0019 (8)−0.0012 (8)
C80.0188 (12)0.0352 (14)0.0120 (11)0.0036 (9)0.0015 (8)−0.0043 (10)
C90.0207 (13)0.0299 (13)0.0198 (13)0.0010 (9)0.0041 (10)−0.0017 (10)
C100.0162 (11)0.0238 (12)0.0196 (13)−0.0031 (8)0.0051 (9)0.0031 (9)
C110.0217 (13)0.0252 (12)0.0135 (11)−0.0042 (9)0.0056 (9)−0.0023 (9)
C120.0173 (11)0.0198 (11)0.0188 (13)−0.0034 (8)0.0053 (9)0.0005 (9)
C130.0140 (11)0.0285 (12)0.0152 (12)−0.0031 (8)0.0025 (9)−0.0030 (9)
C140.0148 (11)0.0297 (12)0.0135 (11)−0.0032 (8)0.0029 (8)−0.0042 (9)
C150.0277 (14)0.0334 (14)0.0161 (13)−0.0038 (10)0.0066 (10)0.0000 (10)
C160.0289 (14)0.0353 (14)0.0161 (13)−0.0077 (10)0.0052 (10)−0.0032 (10)
C170.0182 (12)0.0283 (12)0.0171 (12)0.0024 (8)0.0064 (9)−0.0017 (9)
C180.0196 (12)0.0284 (13)0.0195 (13)0.0020 (9)0.0061 (10)0.0030 (10)
C190.0200 (12)0.0363 (14)0.0156 (12)0.0026 (10)0.0045 (9)−0.0028 (10)
C200.0173 (11)0.0287 (13)0.0189 (13)−0.0017 (8)0.0037 (9)−0.0065 (10)
C210.0161 (11)0.0325 (13)0.0133 (11)0.0006 (9)0.0039 (9)−0.0035 (9)
C220.0221 (13)0.0250 (12)0.0211 (13)0.0002 (9)0.0070 (10)−0.0043 (10)
C230.0202 (12)0.0219 (12)0.0213 (13)0.0013 (8)0.0067 (10)0.0014 (9)
C240.0212 (13)0.0242 (12)0.0117 (11)−0.0062 (9)0.0039 (9)−0.0016 (9)
C250.0244 (13)0.0215 (11)0.0143 (12)−0.0036 (9)0.0063 (10)−0.0005 (9)
C260.0197 (12)0.0220 (11)0.0142 (12)−0.0009 (8)0.0055 (9)−0.0027 (8)
C270.0167 (12)0.0240 (11)0.0107 (10)−0.0022 (8)0.0026 (8)−0.0008 (8)
C280.0183 (12)0.0215 (11)0.0130 (11)−0.0019 (8)0.0005 (9)−0.0038 (8)
O1W0.0138 (9)0.0420 (11)0.0171 (9)0.0041 (7)0.0060 (7)0.0002 (8)
O2W0.0151 (9)0.0296 (10)0.0184 (9)0.0010 (6)0.0055 (7)0.0006 (7)

Geometric parameters (Å, °)

Cu1—O71.953 (2)C2—H2A0.93
Cu1—O41.967 (2)C3—C41.397 (4)
Cu1—O51.971 (2)C4—C51.364 (4)
Cu1—O21.983 (2)C4—H4A0.93
Cu1—O2W2.159 (2)C5—C61.392 (4)
Cu1—Cu22.6458 (3)C6—C71.476 (4)
Cu2—O31.948 (2)C8—C131.382 (4)
Cu2—O81.964 (2)C8—C91.400 (4)
Cu2—O11.968 (2)C8—H8A0.93
Cu2—O61.987 (2)C9—C101.370 (4)
Cu2—O1W2.137 (2)C9—H9A0.93
Cl1—C51.728 (3)C10—C111.382 (4)
Cl2—C121.732 (3)C11—C121.396 (4)
Cl3A—C151.678 (3)C11—H11A0.93
Cl3B—C191.733 (3)C12—C131.405 (4)
Cl3B—H19A0.7759C13—C141.491 (4)
Cl4—C261.733 (3)C15—C161.382 (4)
O1—C71.263 (3)C15—C201.393 (4)
O2—C71.266 (3)C15—H15A0.97
O3—C141.277 (3)C16—C171.371 (4)
O4—C141.252 (3)C16—H16A0.93
O5—C211.247 (3)C17—C181.381 (4)
O6—C211.262 (3)C18—C191.392 (4)
O7—C281.257 (3)C18—H18A0.93
O8—C281.257 (3)C19—C201.376 (4)
O9—N11.228 (3)C19—H19A0.96
O10—N11.223 (3)C20—C211.518 (4)
O11—N21.225 (3)C22—C231.378 (4)
O12—N21.223 (3)C22—C271.399 (4)
O13—N31.232 (3)C22—H22A0.93
O14—N31.227 (4)C23—C241.393 (4)
O15—N41.224 (3)C23—H23A0.93
O16—N41.226 (3)C24—C251.375 (4)
N1—C31.462 (4)C25—C261.399 (4)
N2—C101.464 (4)C25—H25A0.93
N3—C171.476 (4)C26—C271.394 (4)
N4—C241.476 (4)C27—C281.510 (4)
C1—C21.399 (4)O1W—H1W10.85
C1—C61.407 (4)O1W—H2W10.85
C1—H1A0.93O2W—H1W20.82
C2—C31.401 (4)O2W—H2W20.85
O7—Cu1—O4167.90 (9)C13—C8—H8A118.8
O7—Cu1—O589.29 (9)C9—C8—H8A118.8
O4—Cu1—O590.90 (10)C10—C9—C8117.5 (3)
O7—Cu1—O288.53 (9)C10—C9—H9A121.3
O4—Cu1—O288.83 (9)C8—C9—H9A121.3
O5—Cu1—O2168.24 (8)C9—C10—C11122.8 (3)
O7—Cu1—O2W108.34 (8)C9—C10—N2119.9 (3)
O4—Cu1—O2W83.68 (8)C11—C10—N2117.2 (2)
O5—Cu1—O2W95.85 (8)C10—C11—C12118.6 (2)
O2—Cu1—O2W95.81 (8)C10—C11—H11A120.7
O7—Cu1—Cu285.71 (6)C12—C11—H11A120.7
O4—Cu1—Cu282.30 (7)C11—C12—C13120.6 (2)
O5—Cu1—Cu283.29 (6)C11—C12—Cl2116.5 (2)
O2—Cu1—Cu285.02 (6)C13—C12—Cl2122.8 (2)
O2W—Cu1—Cu2165.93 (6)C8—C13—C12118.1 (3)
O3—Cu2—O8168.65 (9)C8—C13—C14119.0 (2)
O3—Cu2—O188.80 (9)C12—C13—C14122.9 (2)
O8—Cu2—O190.62 (9)O4—C14—O3125.2 (3)
O3—Cu2—O690.01 (9)O4—C14—C13118.5 (2)
O8—Cu2—O688.28 (9)O3—C14—C13116.2 (2)
O1—Cu2—O6168.47 (8)C16—C15—C20121.2 (3)
O3—Cu2—O1W107.06 (8)C16—C15—Cl3A119.3 (2)
O8—Cu2—O1W84.29 (9)C20—C15—Cl3A119.4 (2)
O1—Cu2—O1W95.03 (8)C16—C15—H15A120.1
O6—Cu2—O1W96.28 (9)C20—C15—H15A118.6
O3—Cu2—Cu185.97 (6)C17—C16—C15117.7 (3)
O8—Cu2—Cu182.70 (7)C17—C16—H16A121.1
O1—Cu2—Cu183.46 (6)C15—C16—H16A121.1
O6—Cu2—Cu185.02 (6)C16—C17—C18123.0 (3)
O1W—Cu2—Cu1166.88 (6)C16—C17—N3119.1 (3)
C7—O1—Cu2124.26 (18)C18—C17—N3117.9 (3)
C7—O2—Cu1121.62 (18)C17—C18—C19118.1 (3)
C14—O3—Cu2121.26 (18)C17—C18—H18A121.0
C14—O4—Cu1125.22 (19)C19—C18—H18A121.0
C21—O5—Cu1124.00 (19)C20—C19—C18120.6 (3)
C21—O6—Cu2120.73 (18)C20—C19—Cl3B114.7 (2)
C28—O7—Cu1120.60 (18)C18—C19—Cl3B124.7 (2)
C28—O8—Cu2123.54 (19)C20—C19—H19A119.5
O10—N1—O9124.1 (3)C18—C19—H19A119.9
O10—N1—C3117.9 (3)C19—C20—C15119.3 (3)
O9—N1—C3118.0 (2)C19—C20—C21119.3 (2)
O12—N2—O11124.9 (3)C15—C20—C21121.4 (3)
O12—N2—C10117.2 (3)O5—C21—O6126.8 (3)
O11—N2—C10117.9 (2)O5—C21—C20115.8 (2)
O14—N3—O13123.4 (3)O6—C21—C20117.3 (2)
O14—N3—C17118.4 (3)C23—C22—C27121.6 (2)
O13—N3—C17118.2 (2)C23—C22—H22A119.2
O15—N4—O16123.4 (3)C27—C22—H22A119.2
O15—N4—C24118.9 (2)C22—C23—C24117.3 (2)
O16—N4—C24117.7 (3)C22—C23—H23A121.3
C2—C1—C6120.6 (3)C24—C23—H23A121.3
C2—C1—H1A119.7C25—C24—C23123.7 (3)
C6—C1—H1A119.7C25—C24—N4117.6 (2)
C1—C2—C3117.7 (3)C23—C24—N4118.7 (2)
C1—C2—H2A121.2C24—C25—C26117.5 (2)
C3—C2—H2A121.2C24—C25—H25A121.3
C4—C3—C2122.3 (3)C26—C25—H25A121.3
C4—C3—N1119.1 (2)C27—C26—C25121.0 (2)
C2—C3—N1118.6 (3)C27—C26—Cl4122.8 (2)
C5—C4—C3118.5 (2)C25—C26—Cl4116.18 (19)
C5—C4—H4A120.8C26—C27—C22118.9 (2)
C3—C4—H4A120.8C26—C27—C28123.3 (2)
C4—C5—C6122.0 (2)C22—C27—C28117.9 (2)
C4—C5—Cl1120.1 (2)O8—C28—O7127.2 (3)
C6—C5—Cl1117.9 (2)O8—C28—C27116.8 (2)
C5—C6—C1119.0 (2)O7—C28—C27116.0 (2)
C5—C6—C7120.7 (2)Cu2—O1W—H1W1110.7
C1—C6—C7120.3 (2)Cu2—O1W—H2W1141.6
O1—C7—O2125.6 (3)H1W1—O1W—H2W1107.7
O1—C7—C6116.1 (2)Cu1—O2W—H1W2118.7
O2—C7—C6118.2 (2)Cu1—O2W—H2W2140.4
C13—C8—C9122.4 (3)H1W2—O2W—H2W286.0
O7—Cu1—Cu2—O3−177.67 (10)Cu1—O2—C7—O1−2.3 (4)
O4—Cu1—Cu2—O30.72 (9)Cu1—O2—C7—C6175.39 (18)
O5—Cu1—Cu2—O392.54 (9)C5—C6—C7—O1100.4 (3)
O2—Cu1—Cu2—O3−88.77 (9)C1—C6—C7—O1−78.2 (3)
O2W—Cu1—Cu2—O35.3 (2)C5—C6—C7—O2−77.5 (3)
O7—Cu1—Cu2—O83.06 (9)C1—C6—C7—O2103.9 (3)
O4—Cu1—Cu2—O8−178.55 (11)C13—C8—C9—C10−1.4 (4)
O5—Cu1—Cu2—O8−86.72 (9)C8—C9—C10—C112.0 (4)
O2—Cu1—Cu2—O891.96 (9)C8—C9—C10—N2−176.0 (2)
O2W—Cu1—Cu2—O8−174.0 (2)O12—N2—C10—C9−164.6 (3)
O7—Cu1—Cu2—O1−88.41 (8)O11—N2—C10—C915.0 (4)
O4—Cu1—Cu2—O189.98 (9)O12—N2—C10—C1117.3 (4)
O5—Cu1—Cu2—O1−178.20 (11)O11—N2—C10—C11−163.1 (2)
O2—Cu1—Cu2—O10.49 (8)C9—C10—C11—C12−0.4 (4)
O2W—Cu1—Cu2—O194.5 (2)N2—C10—C11—C12177.5 (2)
O7—Cu1—Cu2—O691.96 (8)C10—C11—C12—C13−1.7 (4)
O4—Cu1—Cu2—O6−89.64 (9)C10—C11—C12—Cl2−179.3 (2)
O5—Cu1—Cu2—O62.18 (9)C9—C8—C13—C12−0.7 (4)
O2—Cu1—Cu2—O6−179.14 (10)C9—C8—C13—C14179.7 (3)
O2W—Cu1—Cu2—O6−85.1 (2)C11—C12—C13—C82.2 (4)
O7—Cu1—Cu2—O1W−4.3 (3)Cl2—C12—C13—C8179.7 (2)
O4—Cu1—Cu2—O1W174.1 (3)C11—C12—C13—C14−178.1 (2)
O5—Cu1—Cu2—O1W−94.1 (3)Cl2—C12—C13—C14−0.7 (4)
O2—Cu1—Cu2—O1W84.6 (3)Cu1—O4—C14—O3−0.8 (4)
O2W—Cu1—Cu2—O1W178.6 (4)Cu1—O4—C14—C13−177.66 (18)
O3—Cu2—O1—C784.2 (2)Cu2—O3—C14—O41.8 (4)
O8—Cu2—O1—C7−84.4 (2)Cu2—O3—C14—C13178.69 (17)
O6—Cu2—O1—C70.0 (6)C8—C13—C14—O4140.1 (3)
O1W—Cu2—O1—C7−168.7 (2)C12—C13—C14—O4−39.6 (4)
Cu1—Cu2—O1—C7−1.8 (2)C8—C13—C14—O3−37.0 (4)
O7—Cu1—O2—C786.5 (2)C12—C13—C14—O3143.3 (3)
O4—Cu1—O2—C7−81.7 (2)C20—C15—C16—C17−0.2 (5)
O5—Cu1—O2—C77.1 (6)Cl3A—C15—C16—C17−177.9 (2)
O2W—Cu1—O2—C7−165.3 (2)C15—C16—C17—C180.4 (5)
Cu2—Cu1—O2—C70.6 (2)C15—C16—C17—N3−177.6 (3)
O8—Cu2—O3—C142.2 (6)O14—N3—C17—C16172.8 (3)
O1—Cu2—O3—C14−85.0 (2)O13—N3—C17—C16−5.9 (4)
O6—Cu2—O3—C1483.6 (2)O14—N3—C17—C18−5.3 (4)
O1W—Cu2—O3—C14−179.9 (2)O13—N3—C17—C18175.9 (3)
Cu1—Cu2—O3—C14−1.5 (2)C16—C17—C18—C19−0.5 (4)
O7—Cu1—O4—C147.4 (6)N3—C17—C18—C19177.6 (2)
O5—Cu1—O4—C14−83.3 (2)C17—C18—C19—C200.3 (4)
O2—Cu1—O4—C1484.9 (2)C17—C18—C19—Cl3B179.0 (2)
O2W—Cu1—O4—C14−179.1 (2)C18—C19—C20—C15−0.1 (4)
Cu2—Cu1—O4—C14−0.2 (2)Cl3B—C19—C20—C15−178.9 (2)
O7—Cu1—O5—C21−87.4 (2)C18—C19—C20—C21178.5 (3)
O4—Cu1—O5—C2180.5 (2)Cl3B—C19—C20—C21−0.3 (4)
O2—Cu1—O5—C21−8.0 (6)C16—C15—C20—C190.0 (5)
O2W—Cu1—O5—C21164.3 (2)Cl3A—C15—C20—C19177.8 (2)
Cu2—Cu1—O5—C21−1.6 (2)C16—C15—C20—C21−178.5 (3)
O3—Cu2—O6—C21−89.5 (2)Cl3A—C15—C20—C21−0.8 (4)
O8—Cu2—O6—C2179.3 (2)Cu1—O5—C21—O6−0.7 (4)
O1—Cu2—O6—C21−5.4 (6)Cu1—O5—C21—C20177.50 (19)
O1W—Cu2—O6—C21163.3 (2)Cu2—O6—C21—O53.7 (4)
Cu1—Cu2—O6—C21−3.6 (2)Cu2—O6—C21—C20−174.52 (18)
O4—Cu1—O7—C28−10.3 (5)C19—C20—C21—O5−99.2 (3)
O5—Cu1—O7—C2880.7 (2)C15—C20—C21—O579.4 (4)
O2—Cu1—O7—C28−87.7 (2)C19—C20—C21—O679.2 (4)
O2W—Cu1—O7—C28176.62 (19)C15—C20—C21—O6−102.2 (3)
Cu2—Cu1—O7—C28−2.63 (19)C27—C22—C23—C241.7 (4)
O3—Cu2—O8—C28−8.3 (6)C22—C23—C24—C25−1.6 (4)
O1—Cu2—O8—C2878.7 (2)C22—C23—C24—N4177.4 (2)
O6—Cu2—O8—C28−89.8 (2)O15—N4—C24—C25159.1 (3)
O1W—Cu2—O8—C28173.7 (2)O16—N4—C24—C25−20.0 (4)
Cu1—Cu2—O8—C28−4.6 (2)O15—N4—C24—C23−20.0 (4)
C6—C1—C2—C30.7 (4)O16—N4—C24—C23160.9 (3)
C1—C2—C3—C4−0.3 (4)C23—C24—C25—C260.3 (4)
C1—C2—C3—N1177.6 (3)N4—C24—C25—C26−178.6 (2)
O10—N1—C3—C45.1 (4)C24—C25—C26—C270.9 (4)
O9—N1—C3—C4−176.1 (3)C24—C25—C26—Cl4178.0 (2)
O10—N1—C3—C2−172.9 (3)C25—C26—C27—C22−0.8 (4)
O9—N1—C3—C25.9 (4)Cl4—C26—C27—C22−177.7 (2)
C2—C3—C4—C5−0.3 (4)C25—C26—C27—C28−179.9 (2)
N1—C3—C4—C5−178.2 (3)Cl4—C26—C27—C283.2 (4)
C3—C4—C5—C60.5 (4)C23—C22—C27—C26−0.6 (4)
C3—C4—C5—Cl1−179.2 (2)C23—C22—C27—C28178.6 (2)
C4—C5—C6—C1−0.1 (4)Cu2—O8—C28—O74.3 (4)
Cl1—C5—C6—C1179.6 (2)Cu2—O8—C28—C27−176.45 (17)
C4—C5—C6—C7−178.7 (3)Cu1—O7—C28—O8−0.1 (4)
Cl1—C5—C6—C71.0 (3)Cu1—O7—C28—C27−179.27 (16)
C2—C1—C6—C5−0.5 (4)C26—C27—C28—O841.5 (4)
C2—C1—C6—C7178.1 (3)C22—C27—C28—O8−137.6 (3)
Cu2—O1—C7—O23.1 (4)C26—C27—C28—O7−139.2 (3)
Cu2—O1—C7—C6−174.68 (17)C22—C27—C28—O741.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O13i0.852.352.910 (3)124
O1W—H2W1···O2ii0.851.992.838 (3)175
O2W—H1W2···O9iii0.822.152.927 (3)158
O2W—H2W2···O6iv0.851.982.826 (3)173
C1—H1A···Cl1v0.932.783.417 (3)127
C4—H4A···O14vi0.932.513.331 (4)147
C8—H8A···O12v0.932.383.269 (4)159
C18—H18A···O10vii0.932.553.364 (4)147
C22—H22A···O16viii0.932.363.240 (4)158
C23—H23A···O2Wi0.932.513.385 (3)157

Symmetry codes: (i) x, −y+2, z−1/2; (ii) x+1, y, z; (iii) x, −y+1, z+1/2; (iv) x−1, y, z; (v) x, −y+1, z−1/2; (vi) x−1, y−1, z; (vii) x+1, y+1, z; (viii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2732).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Balaraman, S., Venugopal, R., Palanisamy, U. M., Helen, S. & Mallayan, P. (2006). J. Inorg. Biochem.100, 316–330. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kabbani, A. T., Zaworotko, M. J., Abourahma, H., Walsh, R. D. B. & Hammud, H. H. (2004). J. Chem. Crystallogr 11, 749–756.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mrozińki, J. & Glowiak, T. (2004). Polyhedron, 23, 1303–1308.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography