PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m76.
Published online 2008 December 17. doi:  10.1107/S1600536808041664
PMCID: PMC2967913

Poly[diaqua-μ-oxalato-μ-pyrazine-2-carbox­yl­ato-lanthanum(III)]

Abstract

In the title complex, [La(C5H3N2O2)(C2O4)(H2O)2]n, the LaIII ion is coordinated by one N and three O atoms from two pyrazine-2-carboxylate ligands, by four O atoms from two oxalate ligands and by two O atoms of two water molecules, displaying a distorted bicapped square-anti­prismatic geometry. The carboxyl­ate groups of pyrazine-2-carboxyl­ate and oxalate ligands link the lanthanum metal centres, forming layers parallel to (10An external file that holds a picture, illustration, etc.
Object name is e-65-00m76-efi1.jpg). The layers are further connected by inter­molecular O—H(...)O and N—H(...)O hydrogen-bonding inter­actions, forming a three-dimensional supra­molecular network.

Related literature

For general background, see: Eddaoudi et al. (2001 [triangle]); Rizk et al. (2005 [triangle]); Zeng et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m76-scheme1.jpg

Experimental

Crystal data

  • [La(C5H3N2O2)(C2O4)(H2O)2]
  • M r = 386.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m76-efi2.jpg
  • a = 8.040 (3) Å
  • b = 8.7343 (18) Å
  • c = 8.8329 (18) Å
  • α = 115.552 (2)°
  • β = 101.447 (3)°
  • γ = 95.789 (3)°
  • V = 536.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.02 mm−1
  • T = 296 (2) K
  • 0.17 × 0.16 × 0.14 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2004 [triangle]) T min = 0.548, T max = 0.603 (expected range = 0.518–0.569)
  • 2761 measured reflections
  • 1898 independent reflections
  • 1787 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.078
  • S = 1.07
  • 1898 reflections
  • 163 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 1.61 e Å−3
  • Δρmin = −1.22 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), PLATON (Spek, 2003 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041664/dn2413sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041664/dn2413Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

The design, synthesis, characterization, and properties of supramolecular networks formed by using functionalized organic molecules as bridges between metal centers are of great interest(Eddaoudi et al., 2001; Rizk et al., 2005; Zeng et al.,2007). As a building block, pyrazine-2-carboxylic acid and oxalic acid are excellent candidates for the construction of supramolecular complexes. Herein, we reported the new coordination polymer, (I).

In (I), each LaIII centre is coordinated by seven oxygen atoms and one nitrogen atom from two pyrazine-2-carboxylate ligands, two oxalate ligands and two water molecules (Fig. 1), and represents a distorted bicapped square antiprismatic geometry. The LaIII ions are linked by pyrazine-2-carboxylate ligands and oxalate ligands to form layers parallel to the (1 0 -1) plane (Fig.2), and the adjacent La···La separations are 6.570 (4) and 4.506 (5) Å, respectively. O—H···O and N—H···O hydrogen bonds (Table 1), involving the pyrazine-2-carboxylate ligands, coordinating water molecules and oxalate ligands assemble neighboring layers into a three-dimensional supramolecular network motif .

Experimental

A mixture of La2O3 (0.245 g; 0.75 mmol), pyrazine-2-carboxylic acid (0.186 g; 1.5 mmol), oxalic acid(0.135 g; 1.5 mmol), water (10 mL) in the presence of HNO3 (0.024 g; 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 mL, capacity). The autoclave was heated and maintained at 433K for 3 days, and then cooled to room temperature at 5 K h-1 and obtained the colorless block crystals.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). In the last cycles of refinement they were treated as riding on the O atoms. Carbon-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
ORTEP view showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)1-x, 1-y, 1-z; (ii)1-x, -y, -z; (iii)1-x, -y, 1-z]
Fig. 2.
View of the layered network of the title structure.

Crystal data

[La(C5H3N2O2)(C2O4)(H2O)2]Z = 2
Mr = 386.06F(000) = 368
Triclinic, P1Dx = 2.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.040 (3) ÅCell parameters from 6377 reflections
b = 8.7343 (18) Åθ = 1.7–28.0°
c = 8.8329 (18) ŵ = 4.02 mm1
α = 115.552 (2)°T = 296 K
β = 101.447 (3)°Block, colourless
γ = 95.789 (3)°0.17 × 0.16 × 0.14 mm
V = 536.1 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer1898 independent reflections
Radiation source: fine-focus sealed tube1787 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.2°, θmin = 2.6°
Absorption correction: multi-scan (APEX2; Bruker, 2004)h = −5→9
Tmin = 0.548, Tmax = 0.603k = −10→10
2761 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0533P)2] where P = (Fo2 + 2Fc2)/3
1898 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 1.61 e Å3
6 restraintsΔρmin = −1.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2750 (6)0.2794 (6)0.7523 (6)0.0218 (10)
C20.2577 (7)0.4053 (7)0.9066 (7)0.0285 (11)
H20.31910.41221.01110.034*
C30.0676 (7)0.4974 (7)0.7564 (7)0.0304 (12)
H3−0.00790.57060.75290.036*
C40.0849 (7)0.3716 (7)0.6014 (7)0.0289 (11)
H40.02020.36210.49680.035*
C50.5718 (6)0.4928 (6)0.5701 (6)0.0204 (10)
C60.0553 (6)−0.0282 (6)−0.0653 (6)0.0218 (10)
C70.3936 (6)0.1564 (7)0.7458 (6)0.0238 (10)
La10.33941 (3)0.08521 (3)0.32247 (3)0.01745 (13)
N10.1560 (6)0.5173 (6)0.9109 (6)0.0284 (10)
N80.1914 (5)0.2634 (5)0.5974 (5)0.0235 (9)
O10.3920 (5)0.0398 (4)0.5980 (4)0.0248 (8)
O20.4933 (5)0.1760 (5)0.8841 (5)0.0314 (8)
O30.5571 (5)0.3495 (4)0.5715 (4)0.0246 (7)
O40.6879 (4)0.6241 (4)0.6678 (4)0.0264 (8)
O5−0.0155 (4)−0.0721 (5)−0.2201 (4)0.0299 (8)
O60.2119 (4)−0.0240 (5)−0.0025 (4)0.0292 (8)
O1W0.2022 (5)−0.2208 (4)0.2499 (4)0.0271 (8)
O2W0.5746 (5)0.1980 (5)0.2097 (4)0.0300 (8)
H1W0.1827−0.29130.14410.045*
H3W0.52930.20790.12100.045*
H2W0.2583−0.26300.30710.045*
H4W0.66110.15340.19000.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.018 (2)0.027 (2)0.021 (2)0.007 (2)0.005 (2)0.012 (2)
C20.024 (3)0.033 (3)0.026 (3)0.008 (2)0.004 (2)0.012 (2)
C30.030 (3)0.030 (3)0.033 (3)0.012 (2)0.010 (2)0.014 (2)
C40.031 (3)0.033 (3)0.029 (3)0.017 (2)0.007 (2)0.018 (2)
C50.015 (2)0.025 (2)0.021 (2)0.0083 (19)0.005 (2)0.009 (2)
C60.017 (2)0.023 (2)0.024 (2)0.0043 (19)0.004 (2)0.010 (2)
C70.018 (2)0.033 (3)0.025 (3)0.005 (2)0.007 (2)0.016 (2)
La10.01352 (18)0.01999 (18)0.01806 (18)0.00464 (11)0.00163 (12)0.00898 (13)
N10.022 (2)0.027 (2)0.031 (2)0.0072 (18)0.0067 (19)0.0093 (19)
N80.022 (2)0.027 (2)0.023 (2)0.0084 (17)0.0035 (17)0.0132 (18)
O10.0267 (19)0.0270 (18)0.0238 (18)0.0104 (15)0.0089 (15)0.0126 (15)
O20.028 (2)0.046 (2)0.0244 (18)0.0153 (17)0.0049 (16)0.0195 (17)
O30.0261 (19)0.0225 (17)0.0260 (18)0.0047 (14)0.0020 (15)0.0143 (15)
O40.0196 (18)0.0241 (18)0.0316 (19)0.0037 (15)−0.0015 (15)0.0131 (16)
O50.0172 (18)0.049 (2)0.0197 (18)0.0097 (16)0.0016 (15)0.0132 (16)
O60.0147 (18)0.046 (2)0.0220 (17)0.0100 (16)0.0020 (14)0.0123 (16)
O1W0.0262 (19)0.0239 (18)0.0263 (18)0.0031 (15)0.0015 (15)0.0100 (15)
O2W0.027 (2)0.039 (2)0.0272 (19)0.0109 (17)0.0114 (16)0.0166 (17)

Geometric parameters (Å, °)

C1—N81.340 (6)C7—O11.259 (6)
C1—C21.378 (7)La1—O1W2.533 (3)
C1—C71.497 (7)La1—O4i2.536 (3)
C2—N11.330 (7)La1—O62.544 (3)
C2—H20.9300La1—O32.551 (3)
C3—N11.336 (7)La1—O5ii2.555 (4)
C3—C41.382 (7)La1—O12.592 (3)
C3—H30.9300La1—O2W2.600 (4)
C4—N81.332 (7)La1—O1iii2.623 (3)
C4—H40.9300La1—N82.828 (4)
C5—O41.242 (6)La1—O2iii2.889 (4)
C5—O31.250 (6)La1—C7iii3.124 (5)
C5—C5i1.574 (9)O1W—H1W0.8385
C6—O51.239 (6)O1W—H2W0.8353
C6—O61.261 (6)O2W—H3W0.8400
C6—C6ii1.539 (9)O2W—H4W0.8421
C7—O21.252 (6)
N8—C1—C2122.0 (5)O5ii—La1—O1iii154.21 (12)
N8—C1—C7115.3 (4)O1—La1—O1iii60.45 (13)
C2—C1—C7122.7 (5)O2W—La1—O1iii75.58 (11)
N1—C2—C1122.1 (5)O1W—La1—N897.55 (12)
N1—C2—H2118.9O4i—La1—N872.37 (12)
C1—C2—H2118.9O6—La1—N8128.17 (11)
N1—C3—C4122.0 (5)O3—La1—N868.57 (12)
N1—C3—H3119.0O5ii—La1—N866.44 (11)
C4—C3—H3119.0O1—La1—N858.52 (11)
N8—C4—C3121.9 (5)O2W—La1—N8131.02 (12)
N8—C4—H4119.0O1iii—La1—N8115.86 (11)
C3—C4—H4119.0O1W—La1—O2iii66.41 (11)
O4—C5—O3126.6 (4)O4i—La1—O2iii129.49 (11)
O4—C5—C5i117.0 (5)O6—La1—O2iii68.05 (11)
O3—C5—C5i116.4 (5)O3—La1—O2iii112.40 (11)
O5—C6—O6126.1 (4)O5ii—La1—O2iii121.50 (11)
O5—C6—C6ii118.0 (5)O1—La1—O2iii99.45 (10)
O6—C6—C6ii115.9 (5)O2W—La1—O2iii65.10 (11)
O2—C7—O1122.7 (5)O1iii—La1—O2iii46.83 (10)
O2—C7—C1119.7 (5)N8—La1—O2iii157.23 (11)
O1—C7—C1117.5 (4)O1W—La1—C7iii68.77 (12)
O2—C7—La1iii67.6 (3)O4i—La1—C7iii137.10 (12)
O1—C7—La1iii55.5 (3)O6—La1—C7iii91.66 (12)
C1—C7—La1iii169.0 (3)O3—La1—C7iii95.00 (12)
O1W—La1—O4i150.33 (12)O5ii—La1—C7iii139.98 (12)
O1W—La1—O682.82 (11)O1—La1—C7iii78.74 (11)
O4i—La1—O682.26 (12)O2W—La1—C7iii70.04 (12)
O1W—La1—O3139.37 (10)O1iii—La1—C7iii23.29 (11)
O4i—La1—O363.95 (11)N8—La1—C7iii136.97 (12)
O6—La1—O3136.33 (11)O2iii—La1—C7iii23.62 (11)
O1W—La1—O5ii77.14 (12)C2—N1—C3116.0 (5)
O4i—La1—O5ii73.25 (12)C4—N8—C1115.9 (4)
O6—La1—O5ii63.19 (11)C4—N8—La1126.3 (3)
O3—La1—O5ii124.85 (11)C1—N8—La1114.8 (3)
O1W—La1—O168.69 (11)C7—O1—La1122.9 (3)
O4i—La1—O1122.78 (11)C7—O1—La1iii101.2 (3)
O6—La1—O1151.51 (12)La1—O1—La1iii119.55 (13)
O3—La1—O171.74 (11)C7—O2—La1iii88.8 (3)
O5ii—La1—O1108.11 (11)C5—O3—La1120.1 (3)
O1W—La1—O2W130.93 (11)C5—O4—La1i120.6 (3)
O4i—La1—O2W67.57 (12)C6—O5—La1ii121.0 (3)
O6—La1—O2W72.86 (11)C6—O6—La1121.8 (3)
O3—La1—O2W69.18 (11)La1—O1W—H1W113.1
O5ii—La1—O2W123.82 (12)La1—O1W—H2W115.0
O1—La1—O2W126.58 (11)H1W—O1W—H2W107.3
O1W—La1—O1iii77.11 (11)La1—O2W—H3W111.1
O4i—La1—O1iii132.53 (11)La1—O2W—H4W123.8
O6—La1—O1iii114.65 (11)H3W—O2W—H4W106.5
O3—La1—O1iii75.79 (11)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z; (iii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1iv0.841.972.796 (6)170
O2W—H3W···O2v0.841.942.737 (5)157
O1W—H2W···O3iii0.842.052.874 (5)167
O2W—H4W···O6vi0.842.092.825 (5)146

Symmetry codes: (iv) x, y−1, z−1; (v) x, y, z−1; (iii) −x+1, −y, −z+1; (vi) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2413).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res 34, 319–330. [PubMed]
  • Rizk, A. T., Kizk, A., Ilner, C. A. & Halcrow, M. A. (2005). CrystEngCommun, 7, 359–362.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography