PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m68–m69.
Published online 2008 December 13. doi:  10.1107/S1600536808041755
PMCID: PMC2967907

Aqua­(dicyanamido-κN 1)(nitrato-κ2 O,O′)(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)manganese(II)

Abstract

In the title compound, [Mn(C2N3)(NO3)(C24H16N6)(H2O)], the central manganese(II) ion is hepta­coordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water mol­ecule. The structure contains isolated neutral complexes, which are linked by O(water)—H(...)N hydrogen bonds generating chains along [010].

Related literature

For related structures containing coordination compounds with the ligands tppz and dca, see: Carranza et al. (2003 [triangle]); Hsu et al. (2005 [triangle]). For related literature, see: Lainé et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m68-scheme1.jpg

Experimental

Crystal data

  • [Mn(C2N3)(NO3)(C24H16N6)(H2O)]
  • M r = 589.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m68-efi1.jpg
  • a = 14.0988 (11) Å
  • b = 9.7739 (8) Å
  • c = 18.7205 (13) Å
  • β = 94.491 (6)°
  • V = 2571.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 298 (2) K
  • 0.42 × 0.31 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur 2 diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.856, T max = 0.969
  • 24694 measured reflections
  • 7480 independent reflections
  • 4848 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.119
  • S = 0.93
  • 7480 reflections
  • 376 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2007 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041755/fj2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041755/fj2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Universidad del País Vasco (UPV 00169.125–13956/2004) and the Ministerio de Ciencia y Tecnología (CTQ2005–05778-PPQ). LC thanks UPV/EHU for her doctoral fellowship. N de la P thanks UPV/EHU for financial support from "Convocatoria para la concesión de ayudas de especialización para investigadores doctores en la UPV/EHU (2008)"

supplementary crystallographic information

Comment

Only a few examples are known of coordination compounds with the ligands dicyanamido (dca) and 2,3,5,6-tetra-2-pyridylpyrazine (tppz) (Carranza et al., 2003; Hsu et al., 2005).

The molecule of the title compound (I) (Fig. 1) contains a central manganese(II) metal heptacoordinated to a terminal dicyanamide ligand, three nitrogen atoms of the tppz ligand, two oxygen atoms of the nitrate group, and one water molecule.

The central pyrazine ring of the tppz is severely distorted from planarity (N2—C11—C12—N5 = 20.9 (3)°, N2—C13—C14—N5 = 19.9 (2)°) and adopts a twist-boat conformation with a puckering amplitude of 0.215 (2)Å (Spek, 2003). The pyridyl rings are rotated away from planarity with the pyrazine ring, with angles between planes of 25.3 (1) and 21.5 (1)° for the ones coordinated to Mn(II), and larger [31.1 (1), 35.9 (1)°] for the other ones.

The O(water)—H···N hydrogen bonds formed between the water as donor, and a non-coordinated pyridyl ring and the coordinated nitrogen atom of dca as acceptors, generate chains of molecules along the [010] direction (Fig.2).

Experimental

The title compound was prepared by mixing two acetonitrile solutions (10 ml each) of Mn(NO3)2.4H2O (125.5 mg, 0.50 mmol) and 2,3,5,6-tetrakis(2-pyridyl)pirazine (97.1 mg, 0.25 mmol). After vigorous stirring for 3 h at a temperature of 30°C, a yellow precipitate appeared. To the resulting solution, a water/acetonitrile (50%) solution (10 ml) of sodium dicyanamide was added, and it was stirred at 40°C for 3 h, and then 2 days at room temperature. The precipitate was filtered off and yellow plaques formed from the resulting solution by slow evaporation at room temperature.

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.82 (2), and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Detail of the chain generated by the O(water)—H···N hydrogen bonds.

Crystal data

[Mn(C2N3)(NO3)(C24H16N6)(H2O)]F(000) = 1204
Mr = 589.44Dx = 1.522 Mg m3Dm = 1.475 Mg m3Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2543 reflections
a = 14.0988 (11) Åθ = 3.2–31.9°
b = 9.7739 (8) ŵ = 0.57 mm1
c = 18.7205 (13) ÅT = 298 K
β = 94.491 (6)°Prism, yellow
V = 2571.8 (3) Å30.42 × 0.31 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur 2 diffractometer7480 independent reflections
Radiation source: Enhance (Mo) X-ray Source4848 reflections with I > 2σ(I)
graphiteRint = 0.054
Detector resolution: 8.3504 pixels mm-1θmax = 30.0°, θmin = 2.7°
ω scansh = −18→19
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007)k = −13→12
Tmin = 0.856, Tmax = 0.969l = −26→26
24694 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.93w = 1/[σ2(Fo2) + (0.0676P)2] where P = (Fo2 + 2Fc2)/3
7480 reflections(Δ/σ)max = 0.003
376 parametersΔρmax = 0.77 e Å3
2 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction Ltd., 2007) Analytical numeric absorption correction using a multifaceted crystal model.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.666558 (19)0.45676 (3)0.206427 (15)0.02617 (9)
N10.78906 (11)0.48216 (15)0.29414 (8)0.0258 (3)
N20.80556 (10)0.38970 (15)0.16256 (8)0.0244 (3)
N30.63611 (11)0.34999 (16)0.09605 (9)0.0302 (4)
O10.51063 (11)0.51437 (17)0.19225 (9)0.0447 (4)
O20.58673 (10)0.60852 (16)0.28292 (8)0.0424 (4)
O1W0.63075 (10)0.27874 (16)0.26656 (9)0.0386 (4)
H1W0.5843 (14)0.239 (3)0.2725 (15)0.058*
H2W0.6758 (15)0.237 (2)0.2837 (13)0.058*
O30.44256 (10)0.67307 (17)0.25070 (9)0.0483 (4)
N40.84607 (13)0.11733 (18)0.00078 (9)0.0397 (4)
N50.97237 (11)0.37317 (17)0.10010 (8)0.0298 (4)
N61.03910 (11)0.63452 (17)0.22266 (9)0.0348 (4)
N70.70245 (13)0.64756 (18)0.14738 (10)0.0399 (4)
N80.77072 (15)0.6846 (3)0.03399 (12)0.0622 (6)
N90.6902 (2)0.7210 (4)−0.08341 (14)0.1065 (12)
N100.51142 (11)0.60058 (17)0.24260 (9)0.0321 (4)
C10.87743 (13)0.45325 (18)0.27688 (10)0.0242 (4)
C20.95391 (14)0.4433 (2)0.32828 (11)0.0325 (4)
H21.01410.41950.31530.039*
C30.93869 (15)0.4693 (2)0.39852 (11)0.0377 (5)
H30.98890.46440.43370.045*
C40.84871 (15)0.5027 (2)0.41657 (11)0.0360 (5)
H40.83730.52220.46380.043*
C50.77617 (14)0.5066 (2)0.36298 (11)0.0315 (4)
H50.71510.52720.37530.038*
C60.71035 (13)0.33917 (19)0.05521 (10)0.0271 (4)
C70.69805 (15)0.3326 (2)−0.01871 (11)0.0374 (5)
H70.75050.3313−0.04590.045*
C80.60688 (17)0.3280 (2)−0.05189 (12)0.0472 (6)
H80.59710.3241−0.10160.057*
C90.53124 (16)0.3294 (2)−0.01012 (13)0.0470 (6)
H90.46940.3213−0.03090.056*
C100.54801 (14)0.3427 (2)0.06286 (12)0.0394 (5)
H100.49620.34700.09060.047*
C110.80572 (13)0.34520 (18)0.09524 (9)0.0253 (4)
C120.89402 (13)0.31643 (19)0.06821 (10)0.0281 (4)
C130.88645 (12)0.42660 (18)0.19952 (10)0.0242 (4)
C140.96892 (13)0.43718 (19)0.16272 (10)0.0266 (4)
C151.05445 (13)0.5179 (2)0.18756 (10)0.0292 (4)
C161.14420 (14)0.4738 (2)0.17324 (12)0.0371 (5)
H161.15230.39310.14800.045*
C171.22185 (15)0.5528 (3)0.19744 (14)0.0480 (6)
H171.28320.52620.18870.058*
C181.20685 (16)0.6706 (3)0.23433 (14)0.0530 (6)
H181.25800.72420.25190.064*
C191.11509 (16)0.7090 (2)0.24518 (13)0.0459 (6)
H191.10560.79050.26930.055*
C200.90828 (14)0.2209 (2)0.00846 (10)0.0304 (4)
C210.98469 (15)0.2352 (2)−0.03278 (11)0.0406 (5)
H211.02650.3085−0.02600.049*
C220.99719 (19)0.1369 (3)−0.08467 (12)0.0523 (6)
H221.04790.1432−0.11340.063*
C230.9341 (2)0.0306 (3)−0.09314 (13)0.0547 (7)
H230.9412−0.0367−0.12750.066*
C240.85993 (19)0.0258 (2)−0.04955 (14)0.0517 (6)
H240.8169−0.0462−0.05580.062*
C250.72974 (15)0.6673 (2)0.09222 (13)0.0368 (5)
C260.72404 (19)0.7046 (3)−0.02745 (15)0.0559 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02005 (14)0.03028 (16)0.02787 (16)0.00049 (11)−0.00010 (10)−0.00116 (12)
N10.0219 (8)0.0282 (8)0.0271 (8)0.0000 (6)−0.0003 (6)−0.0003 (6)
N20.0204 (7)0.0269 (8)0.0251 (8)0.0003 (6)−0.0021 (6)−0.0009 (6)
N30.0219 (8)0.0328 (9)0.0350 (9)−0.0007 (6)−0.0036 (7)−0.0055 (7)
O10.0369 (9)0.0503 (9)0.0458 (9)0.0057 (7)−0.0047 (7)−0.0149 (8)
O20.0284 (8)0.0533 (10)0.0436 (9)0.0041 (7)−0.0096 (7)−0.0050 (8)
O1W0.0255 (8)0.0370 (9)0.0528 (9)−0.0031 (6)−0.0008 (7)0.0092 (7)
O30.0277 (8)0.0557 (10)0.0618 (10)0.0143 (7)0.0046 (7)−0.0050 (8)
N40.0423 (10)0.0398 (10)0.0380 (10)−0.0039 (8)0.0098 (8)−0.0084 (8)
N50.0228 (8)0.0358 (9)0.0307 (8)−0.0010 (6)0.0025 (7)−0.0006 (7)
N60.0246 (8)0.0384 (10)0.0410 (10)−0.0014 (7)−0.0009 (7)−0.0049 (8)
N70.0442 (11)0.0323 (10)0.0425 (11)0.0007 (8)−0.0020 (9)0.0041 (8)
N80.0456 (12)0.0891 (18)0.0531 (13)−0.0092 (12)0.0118 (11)0.0062 (12)
N90.085 (2)0.184 (4)0.0492 (16)−0.030 (2)−0.0023 (15)0.0184 (19)
N100.0250 (8)0.0374 (9)0.0340 (9)0.0026 (7)0.0023 (7)0.0033 (8)
C10.0232 (9)0.0247 (9)0.0244 (9)−0.0010 (7)−0.0008 (7)0.0012 (7)
C20.0222 (9)0.0421 (12)0.0322 (10)0.0045 (8)−0.0039 (8)−0.0009 (9)
C30.0352 (11)0.0465 (13)0.0293 (10)0.0023 (9)−0.0104 (9)−0.0015 (9)
C40.0433 (12)0.0399 (11)0.0244 (10)0.0016 (9)0.0001 (9)−0.0035 (8)
C50.0298 (10)0.0349 (10)0.0301 (10)0.0015 (8)0.0044 (8)−0.0026 (8)
C60.0243 (9)0.0260 (9)0.0299 (10)−0.0001 (7)−0.0042 (8)−0.0031 (8)
C70.0347 (11)0.0454 (12)0.0310 (11)0.0026 (9)−0.0036 (9)−0.0008 (9)
C80.0478 (14)0.0553 (15)0.0355 (12)0.0057 (11)−0.0164 (10)−0.0070 (11)
C90.0319 (11)0.0535 (14)0.0526 (14)0.0025 (10)−0.0161 (10)−0.0121 (12)
C100.0231 (10)0.0444 (13)0.0497 (13)−0.0008 (9)−0.0051 (9)−0.0131 (10)
C110.0236 (9)0.0261 (9)0.0257 (9)0.0001 (7)−0.0014 (7)0.0000 (7)
C120.0260 (9)0.0314 (10)0.0266 (9)0.0000 (8)0.0008 (8)0.0014 (8)
C130.0198 (8)0.0256 (9)0.0266 (9)0.0025 (7)−0.0025 (7)−0.0007 (7)
C140.0205 (9)0.0298 (10)0.0290 (9)0.0016 (7)−0.0014 (7)−0.0006 (8)
C150.0204 (9)0.0357 (11)0.0310 (10)−0.0017 (7)−0.0009 (7)0.0017 (8)
C160.0233 (10)0.0424 (12)0.0456 (12)0.0007 (8)0.0028 (9)−0.0035 (10)
C170.0205 (10)0.0605 (15)0.0624 (16)−0.0012 (10)−0.0005 (10)−0.0021 (13)
C180.0262 (11)0.0605 (16)0.0708 (17)−0.0119 (11)−0.0050 (11)−0.0108 (14)
C190.0358 (12)0.0441 (13)0.0565 (14)−0.0066 (10)−0.0036 (11)−0.0125 (11)
C200.0305 (10)0.0349 (11)0.0257 (9)0.0040 (8)0.0021 (8)0.0001 (8)
C210.0350 (11)0.0513 (13)0.0367 (12)0.0006 (10)0.0103 (9)−0.0003 (10)
C220.0533 (15)0.0690 (18)0.0374 (13)0.0108 (13)0.0209 (11)−0.0010 (12)
C230.0729 (19)0.0531 (16)0.0396 (13)0.0094 (13)0.0147 (13)−0.0128 (11)
C240.0624 (17)0.0437 (14)0.0500 (14)−0.0076 (11)0.0112 (12)−0.0135 (11)
C250.0302 (11)0.0321 (11)0.0464 (13)−0.0029 (8)−0.0076 (10)0.0002 (10)
C260.0520 (16)0.0694 (18)0.0481 (15)−0.0163 (13)0.0146 (13)−0.0007 (13)

Geometric parameters (Å, °)

Mn1—O1W2.1537 (15)C3—H30.9300
Mn1—N72.2457 (18)C4—C51.376 (3)
Mn1—O12.2648 (15)C4—H40.9300
Mn1—N22.2796 (15)C5—H50.9300
Mn1—N12.3015 (15)C6—C71.383 (3)
Mn1—N32.3247 (16)C6—C111.488 (2)
Mn1—O22.4021 (15)C7—C81.384 (3)
N1—C51.337 (2)C7—H70.9300
N1—C11.341 (2)C8—C91.371 (3)
N2—C111.333 (2)C8—H80.9300
N2—C131.336 (2)C9—C101.374 (3)
N3—C101.346 (2)C9—H90.9300
N3—C61.348 (2)C10—H100.9300
O1—N101.264 (2)C11—C121.408 (3)
O2—N101.256 (2)C12—C201.483 (3)
O1W—H1W0.776 (16)C13—C141.401 (3)
O1W—H2W0.800 (16)C14—C151.485 (3)
O3—N101.221 (2)C15—C161.383 (3)
N4—C241.325 (3)C16—C171.387 (3)
N4—C201.340 (3)C16—H160.9300
N5—C141.333 (2)C17—C181.367 (3)
N5—C121.334 (2)C17—H170.9300
N6—C191.336 (3)C18—C191.377 (3)
N6—C151.342 (3)C18—H180.9300
N7—C251.146 (3)C19—H190.9300
N8—C251.284 (3)C20—C211.381 (3)
N8—C261.294 (4)C21—C221.387 (3)
N9—C261.128 (4)C21—H210.9300
C1—C21.391 (2)C22—C231.369 (4)
C1—C131.487 (2)C22—H220.9300
C2—C31.373 (3)C23—C241.377 (3)
C2—H20.9300C23—H230.9300
C3—C41.377 (3)C24—H240.9300
O1W—Mn1—N7177.74 (7)N3—C6—C11114.99 (16)
O1W—Mn1—O189.83 (6)C7—C6—C11122.91 (18)
N7—Mn1—O189.42 (7)C6—C7—C8119.3 (2)
O1W—Mn1—N2101.50 (6)C6—C7—H7120.3
N7—Mn1—N280.11 (6)C8—C7—H7120.3
O1—Mn1—N2152.04 (6)C9—C8—C7118.7 (2)
O1W—Mn1—N184.71 (6)C9—C8—H8120.6
N7—Mn1—N194.37 (6)C7—C8—H8120.6
O1—Mn1—N1136.40 (6)C8—C9—C10119.1 (2)
N2—Mn1—N170.72 (5)C8—C9—H9120.4
O1W—Mn1—N393.87 (6)C10—C9—H9120.4
N7—Mn1—N388.18 (6)N3—C10—C9123.0 (2)
O1—Mn1—N384.12 (6)N3—C10—H10118.5
N2—Mn1—N369.81 (5)C9—C10—H10118.5
N1—Mn1—N3139.34 (6)N2—C11—C12118.14 (16)
O1W—Mn1—O292.71 (6)N2—C11—C6114.86 (16)
N7—Mn1—O285.11 (6)C12—C11—C6126.90 (17)
O1—Mn1—O254.58 (5)N5—C12—C11118.71 (17)
N2—Mn1—O2148.05 (5)N5—C12—C20116.28 (16)
N1—Mn1—O282.45 (5)C11—C12—C20124.94 (17)
N3—Mn1—O2138.12 (5)N2—C13—C14118.22 (16)
C5—N1—C1117.95 (16)N2—C13—C1114.65 (16)
C5—N1—Mn1123.77 (13)C14—C13—C1127.13 (16)
C1—N1—Mn1117.69 (12)N5—C14—C13119.12 (16)
C11—N2—C13120.85 (16)N5—C14—C15116.12 (16)
C11—N2—Mn1119.97 (11)C13—C14—C15124.75 (17)
C13—N2—Mn1117.31 (12)N6—C15—C16123.04 (18)
C10—N3—C6117.61 (17)N6—C15—C14116.53 (17)
C10—N3—Mn1122.22 (13)C16—C15—C14120.42 (18)
C6—N3—Mn1116.22 (12)C15—C16—C17118.3 (2)
N10—O1—Mn197.27 (11)C15—C16—H16120.9
N10—O2—Mn190.98 (11)C17—C16—H16120.9
Mn1—O1W—H1W135 (2)C18—C17—C16119.0 (2)
Mn1—O1W—H2W114.3 (19)C18—C17—H17120.5
H1W—O1W—H2W110 (3)C16—C17—H17120.5
C24—N4—C20117.06 (19)C17—C18—C19119.2 (2)
C14—N5—C12120.17 (16)C17—C18—H18120.4
C19—N6—C15117.48 (18)C19—C18—H18120.4
C25—N7—Mn1133.43 (17)N6—C19—C18123.0 (2)
C25—N8—C26122.9 (2)N6—C19—H19118.5
O3—N10—O2122.18 (17)C18—C19—H19118.5
O3—N10—O1121.26 (17)N4—C20—C21123.30 (19)
O2—N10—O1116.56 (16)N4—C20—C12115.50 (17)
N1—C1—C2122.17 (17)C21—C20—C12121.08 (18)
N1—C1—C13115.05 (15)C20—C21—C22118.0 (2)
C2—C1—C13122.73 (17)C20—C21—H21121.0
C3—C2—C1118.60 (18)C22—C21—H21121.0
C3—C2—H2120.7C23—C22—C21119.3 (2)
C1—C2—H2120.7C23—C22—H22120.3
C2—C3—C4119.67 (19)C21—C22—H22120.3
C2—C3—H3120.2C22—C23—C24118.3 (2)
C4—C3—H3120.2C22—C23—H23120.9
C5—C4—C3118.29 (19)C24—C23—H23120.9
C5—C4—H4120.9N4—C24—C23124.0 (2)
C3—C4—H4120.9N4—C24—H24118.0
N1—C5—C4123.26 (18)C23—C24—H24118.0
N1—C5—H5118.4N7—C25—N8172.7 (2)
C4—C5—H5118.4N9—C26—N8174.4 (3)
N3—C6—C7121.95 (17)
O1W—Mn1—N1—C5−63.95 (15)Mn1—N1—C5—C4170.63 (15)
N7—Mn1—N1—C5113.98 (16)C3—C4—C5—N1−1.4 (3)
O1—Mn1—N1—C520.22 (19)C10—N3—C6—C75.5 (3)
N2—Mn1—N1—C5−168.10 (16)Mn1—N3—C6—C7−152.74 (16)
N3—Mn1—N1—C5−153.72 (14)C10—N3—C6—C11−178.84 (17)
O2—Mn1—N1—C529.50 (15)Mn1—N3—C6—C1123.0 (2)
O1W—Mn1—N1—C1107.06 (13)N3—C6—C7—C8−4.3 (3)
N7—Mn1—N1—C1−75.01 (14)C11—C6—C7—C8−179.65 (19)
O1—Mn1—N1—C1−168.77 (12)C6—C7—C8—C9−0.4 (3)
N2—Mn1—N1—C12.91 (12)C7—C8—C9—C103.5 (4)
N3—Mn1—N1—C117.29 (17)C6—N3—C10—C9−2.1 (3)
O2—Mn1—N1—C1−159.49 (13)Mn1—N3—C10—C9154.67 (18)
O1W—Mn1—N2—C11100.10 (14)C8—C9—C10—N3−2.4 (4)
N7—Mn1—N2—C11−81.53 (14)C13—N2—C11—C1210.4 (3)
O1—Mn1—N2—C11−12.0 (2)Mn1—N2—C11—C12174.40 (13)
N1—Mn1—N2—C11−179.74 (15)C13—N2—C11—C6−166.21 (16)
N3—Mn1—N2—C1110.18 (13)Mn1—N2—C11—C6−2.2 (2)
O2—Mn1—N2—C11−145.24 (13)N3—C6—C11—N2−13.9 (2)
O1W—Mn1—N2—C13−95.37 (13)C7—C6—C11—N2161.74 (19)
N7—Mn1—N2—C1383.01 (13)N3—C6—C11—C12169.79 (18)
O1—Mn1—N2—C13152.51 (13)C7—C6—C11—C12−14.5 (3)
N1—Mn1—N2—C13−15.21 (12)C14—N5—C12—C1110.7 (3)
N3—Mn1—N2—C13174.72 (14)C14—N5—C12—C20−166.23 (17)
O2—Mn1—N2—C1319.30 (19)N2—C11—C12—N5−20.9 (3)
O1W—Mn1—N3—C1084.37 (16)C6—C11—C12—N5155.22 (18)
N7—Mn1—N3—C10−94.67 (16)N2—C11—C12—C20155.68 (18)
O1—Mn1—N3—C10−5.06 (16)C6—C11—C12—C20−28.1 (3)
N2—Mn1—N3—C10−174.79 (17)C11—N2—C13—C149.5 (3)
N1—Mn1—N3—C10170.75 (14)Mn1—N2—C13—C14−154.90 (13)
O2—Mn1—N3—C10−14.0 (2)C11—N2—C13—C1−170.97 (16)
O1W—Mn1—N3—C6−118.53 (13)Mn1—N2—C13—C124.63 (19)
N7—Mn1—N3—C662.43 (14)N1—C1—C13—N2−21.5 (2)
O1—Mn1—N3—C6152.04 (14)C2—C1—C13—N2155.81 (17)
N2—Mn1—N3—C6−17.70 (13)N1—C1—C13—C14157.98 (18)
N1—Mn1—N3—C6−32.16 (17)C2—C1—C13—C14−24.7 (3)
O2—Mn1—N3—C6143.05 (12)C12—N5—C14—C139.4 (3)
O1W—Mn1—O1—N1097.99 (12)C12—N5—C14—C15−169.43 (17)
N7—Mn1—O1—N10−79.87 (13)N2—C13—C14—N5−19.9 (3)
N2—Mn1—O1—N10−147.21 (12)C1—C13—C14—N5160.60 (17)
N1—Mn1—O1—N1015.86 (16)N2—C13—C14—C15158.84 (17)
N3—Mn1—O1—N10−168.10 (12)C1—C13—C14—C15−20.6 (3)
O2—Mn1—O1—N104.54 (10)C19—N6—C15—C16−0.9 (3)
O1W—Mn1—O2—N10−92.39 (11)C19—N6—C15—C14−179.71 (19)
N7—Mn1—O2—N1088.24 (11)N5—C14—C15—N6144.16 (18)
O1—Mn1—O2—N10−4.53 (10)C13—C14—C15—N6−34.6 (3)
N2—Mn1—O2—N10150.67 (11)N5—C14—C15—C16−34.7 (3)
N1—Mn1—O2—N10−176.69 (11)C13—C14—C15—C16146.5 (2)
N3—Mn1—O2—N106.46 (15)N6—C15—C16—C171.1 (3)
O1—Mn1—N7—C25−110.2 (2)C14—C15—C16—C17179.9 (2)
N2—Mn1—N7—C2543.7 (2)C15—C16—C17—C180.0 (4)
N1—Mn1—N7—C25113.3 (2)C16—C17—C18—C19−1.3 (4)
N3—Mn1—N7—C25−26.1 (2)C15—N6—C19—C18−0.5 (4)
O2—Mn1—N7—C25−164.7 (2)C17—C18—C19—N61.6 (4)
Mn1—O2—N10—O3−171.75 (17)C24—N4—C20—C21−0.4 (3)
Mn1—O2—N10—O17.42 (17)C24—N4—C20—C12−176.33 (19)
Mn1—O1—N10—O3171.25 (16)N5—C12—C20—N4147.61 (18)
Mn1—O1—N10—O2−7.93 (18)C11—C12—C20—N4−29.1 (3)
C5—N1—C1—C22.4 (3)N5—C12—C20—C21−28.5 (3)
Mn1—N1—C1—C2−169.16 (14)C11—C12—C20—C21154.8 (2)
C5—N1—C1—C13179.72 (16)N4—C20—C21—C220.0 (3)
Mn1—N1—C1—C138.2 (2)C12—C20—C21—C22175.8 (2)
N1—C1—C2—C3−2.6 (3)C20—C21—C22—C230.0 (4)
C13—C1—C2—C3−179.76 (18)C21—C22—C23—C240.3 (4)
C1—C2—C3—C40.8 (3)C20—N4—C24—C230.7 (4)
C2—C3—C4—C51.1 (3)C22—C23—C24—N4−0.6 (4)
C1—N1—C5—C4−0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···N6i0.78 (2)2.03 (2)2.800 (2)174 (3)
O1W—H2W···N7i0.80 (2)2.24 (2)3.029 (2)168 (2)
C5—H5···O20.932.533.122 (2)122
C7—H7···N40.932.602.966 (3)104
C10—H10···O10.932.513.027 (3)116

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2176).

References

  • Brandenburg, K. (2007). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Carranza, J., Brennan, C., Sletten, J., Clemente-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem.42, 8716–8727. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hsu, G.-Y., Chen, C.-W., Cheng, S.-C., Lin, S.-H., Wei, H.-H. & Lee, C.-J. (2005). Polyhedron, 24, 487–494.
  • Lainé, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem.34, 5156–5165.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxford, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography