PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m55.
Published online 2008 December 13. doi:  10.1107/S1600536808040695
PMCID: PMC2967898

[Benzyl(2-pyridylmeth­yl)amine]dichloridomercury(II)

Abstract

The Hg atom in the title compound, [HgCl2(C13H14N2)], adopts a distorted tetra­hedral geometry, being ligated by two N atoms of the benzyl(2-pyridylmeth­yl)amine (bpma) ligand and two Cl atoms. The dihedral angle between the least-squares planes through the chelate ring and Cl—Hg—Cl atoms is 85.4 (1)°. The phenyl ring on the bpma ligand is twisted out of the pyridine plane, forming a dihedral angle of 76.0 (3)°. Disorder in this ring is also noted with two coplanar conformations having equal site occupancies.

Related literature

For general background, see: Ojida et al. (2004 [triangle]). For background on luminescent mercury compounds, see: Yordanov & Roundhill (1998 [triangle]); Das et al. (2003 [triangle]); Haneline et al. (2002 [triangle]); Atoub et al. (2007 [triangle]). For related structures, see Kim et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m55-scheme1.jpg

Experimental

Crystal data

  • [HgCl2(C13H14N2)]
  • M r = 469.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m55-efi1.jpg
  • a = 13.1045 (3) Å
  • b = 13.8233 (3) Å
  • c = 8.3201 (2) Å
  • β = 91.135 (1)°
  • V = 1506.87 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 10.55 mm−1
  • T = 174 (2) K
  • 0.12 × 0.11 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.290, T max = 0.345
  • 16218 measured reflections
  • 3751 independent reflections
  • 3258 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.045
  • S = 1.03
  • 3751 reflections
  • 195 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.82 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040695/tk2337sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040695/tk2337Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Pusan National University Research Center [grant No. BK21(2008)].

supplementary crystallographic information

Comment

Luminescent mercury compounds have attracted considerable attention because of the detection and extraction of the mercury (Yordanov & Roundhill, 1998; Das et al., 2003) as well as the development of luminescent materials (Haneline et al., 2002; Atoub et al., 2007). Recently, we reported Zn(II) (Kim et al., 2007) and Hg(II) (Kim et al., 2008) compounds with bis(2-pyridylmethyl)amine and proposed these as blue fluorescent materials. As an extension of our study on luminescent chemosensors (Ojida et al., 2004), herein, we report a Hg(II) chloride compound with N-benzyl-N-2-(pyridyl)methylamine (bpma), (I), and investigated its structural and luminescent properties.

In (I), Fig, 1, the Hg atom is ligated by two N atoms of the bpma ligand and two Cl atoms. The angles around Hg atom are in the range of 72.83 (9) - 123.37 (7)°, suggesting the coordination geometry around the Hg atom is best described as a distorted tetrahedron. The dihedral angle between the least-squares planes through N1—Hg1—N8 and Cl1—Hg1—Cl2 is 85.4 (1)°, which is close to 90° for a perfect tetrahedron. The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and forms a dihedral angle of 76.0 (3)°. The major contacts in the crystal structure are N-H···Cl interactions and these combine to form a supramolecular chain, Table 1.

The free ligand (bpma) showed two strong blue (λmax,PL = 379 and 449 nm in methylene chloride) fluorescent emissions upon 280 nm excitation, and Hg(bpma)Cl2 displayed an intense blue emission (λmax,PL = 430 nm in dichloromethane) which is tentatively assigned to be an intraligand (IL) 1π-π* transition.

Experimental

All of the reagents and solvents were purchased from Aldrich and used without further purification. N-benzyl-N-(2-pyridylmethyl)amine (bpma) was synthesized from the reaction of 2-pyridinecarboxaldehyde, benzylamine and sodium borohydride. A solution benzylamine (20 mmol) in methanol (30 ml) was added slowly to a solution 2–2-pyridinecarboxaldehyde (20 mmol) in methanol (30 ml), and the mixture stirred for 3 h at room temperature. Sodium borohydride (20 mmol) in methanol (20 ml) was added and the solution was further stirred for 3 h at room temperature. The solution was evaporated to dryness and the residue extracted with dichloromethane to give bpma as yellow oil. To a stirred solution of mercuric chloride (10 mmol) in methanol (20 ml) was added bpma (10 mmol) in methanol (20 ml). The solution was stirred for 6 h at room temperature under a nitrogen atmosphere. The precipitates were filtered off and recrystallized from methanol to give (I) in a 61% yield. 1H-NMR for (I): (300 MHz, d6-DMSO) δ: 8.67 (d, 1H), 8.16 (t, 1H), 7.71 (d, 2H), 7.51 (m, 5H), 6.08 (s, 1H), 4.39(d, 2H), 4.12 (s, 2H).

Refinement

The amine H8 atom was located in a difference map and refined freely with N—H = 0.89 (4) Å. The C-bound H atoms were included in the riding model approximation with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C). Disorder was noted in the structure and this modelled so that two sites were resolved for the phenyl-C12, C13, and C14 atoms. From refinement, each component of the disorder had a site occupancy factor = 0.50 (4).

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids. For clarity, only one component of the disordered phenyl group is shown.

Crystal data

[HgCl2(C13H14N2)]F(000) = 880
Mr = 469.75Dx = 2.071 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6766 reflections
a = 13.1045 (3) Åθ = 2.9–28.3°
b = 13.8233 (3) ŵ = 10.55 mm1
c = 8.3201 (2) ÅT = 174 K
β = 91.135 (1)°Block, colourless
V = 1506.87 (6) Å30.12 × 0.11 × 0.1 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3258 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.027
Absorption correction: multi-scan (SADABS; Bruker, 2002)θmax = 28.3°, θmin = 1.6°
Tmin = 0.290, Tmax = 0.345h = −15→17
16218 measured reflectionsk = −18→18
3751 independent reflectionsl = −11→11

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021w = 1/[σ2(Fo2) + (0.0166P)2 + 1.085P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.69 e Å3
3751 reflectionsΔρmin = −0.82 e Å3
195 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Hg10.212834 (9)0.445793 (9)0.162371 (14)0.03875 (5)
N10.05042 (19)0.39726 (18)0.2591 (3)0.0381 (6)
C2−0.0374 (3)0.3898 (3)0.1748 (4)0.0468 (8)
H2−0.03730.40270.06510.056*
C3−0.1277 (3)0.3639 (3)0.2442 (5)0.0550 (9)
H3−0.18760.35940.18290.066*
C4−0.1275 (3)0.3447 (3)0.4051 (5)0.0540 (9)
H4−0.18780.32780.45510.065*
C5−0.0378 (3)0.3505 (2)0.4930 (4)0.0462 (8)
H5−0.03650.33670.60240.055*
C60.0507 (2)0.3773 (2)0.4161 (4)0.0361 (6)
C70.1496 (2)0.3892 (3)0.5091 (4)0.0463 (8)
H7A0.15180.45350.55590.056*
H7B0.15170.34280.59660.056*
N80.24046 (19)0.37557 (19)0.4098 (3)0.0348 (5)
H80.247 (3)0.312 (3)0.391 (4)0.050 (10)*
C90.3360 (3)0.4089 (3)0.4915 (4)0.0526 (9)
H9A0.3460.37360.59130.063*
H9B0.33020.47710.51730.063*
C100.4254 (2)0.3936 (3)0.3868 (4)0.0411 (7)
C110.4612 (3)0.4674 (3)0.2916 (5)0.0605 (11)
H110.42510.52480.30250.073*
C120.5321 (13)0.473 (2)0.1940 (19)0.052 (4)0.50 (4)
H120.54980.52980.14120.062*0.50 (4)
C130.5821 (16)0.384 (3)0.173 (3)0.066 (7)0.50 (4)
H130.63610.3810.10220.079*0.50 (4)
C140.5540 (15)0.304 (2)0.252 (2)0.065 (6)0.50 (4)
H140.58620.24570.22950.078*0.50 (4)
C12A0.5511 (15)0.4286 (18)0.1850 (19)0.053 (5)0.50 (4)
H12A0.57970.46990.10990.063*0.50 (4)
C13A0.5883 (19)0.337 (2)0.199 (4)0.075 (7)0.50 (4)
H13A0.64180.31660.13560.09*0.50 (4)
C14A0.5477 (16)0.2739 (17)0.307 (4)0.076 (6)0.50 (4)
H14A0.57450.21250.32510.092*0.50 (4)
C150.4712 (3)0.3051 (3)0.3786 (6)0.0694 (12)
H150.45410.25220.44190.083*
Cl10.22317 (7)0.61872 (6)0.18426 (10)0.0500 (2)
Cl20.23761 (8)0.36292 (6)−0.08585 (10)0.0558 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.03980 (7)0.04565 (7)0.03086 (7)−0.00518 (5)0.00190 (5)0.00120 (5)
N10.0373 (14)0.0425 (14)0.0344 (13)−0.0046 (11)0.0005 (11)0.0004 (11)
C20.0426 (19)0.058 (2)0.0401 (18)−0.0070 (16)−0.0046 (15)−0.0019 (16)
C30.0386 (19)0.065 (2)0.062 (2)−0.0093 (16)−0.0023 (17)−0.0102 (19)
C40.044 (2)0.055 (2)0.064 (2)−0.0122 (16)0.0201 (17)−0.0085 (18)
C50.048 (2)0.0474 (18)0.0439 (18)−0.0041 (15)0.0132 (15)0.0000 (15)
C60.0383 (16)0.0338 (14)0.0365 (16)0.0025 (13)0.0069 (13)−0.0041 (13)
C70.0431 (19)0.068 (2)0.0275 (16)0.0032 (16)0.0037 (13)−0.0025 (15)
N80.0344 (13)0.0390 (13)0.0309 (13)0.0012 (11)−0.0024 (10)−0.0015 (11)
C90.043 (2)0.080 (2)0.0349 (18)−0.0055 (18)−0.0100 (15)−0.0113 (17)
C100.0325 (16)0.062 (2)0.0285 (15)−0.0043 (14)−0.0112 (12)−0.0002 (14)
C110.046 (2)0.085 (3)0.050 (2)−0.021 (2)−0.0177 (18)0.013 (2)
C120.031 (5)0.083 (11)0.040 (5)−0.018 (7)−0.014 (4)0.018 (7)
C130.028 (7)0.12 (2)0.053 (6)0.000 (11)−0.008 (6)0.011 (14)
C140.031 (8)0.103 (18)0.062 (9)0.025 (10)0.006 (6)0.009 (8)
C12A0.045 (11)0.063 (14)0.051 (6)−0.013 (8)−0.007 (8)0.013 (10)
C13A0.032 (8)0.101 (18)0.093 (18)−0.006 (10)0.013 (8)−0.027 (13)
C14A0.044 (7)0.073 (9)0.111 (18)−0.005 (6)−0.001 (10)−0.003 (9)
C150.039 (2)0.073 (3)0.096 (3)0.0058 (19)−0.016 (2)0.002 (2)
Cl10.0564 (5)0.0400 (4)0.0539 (5)−0.0043 (4)0.0104 (4)−0.0042 (4)
Cl20.0875 (7)0.0456 (4)0.0346 (4)0.0015 (4)0.0060 (4)−0.0064 (3)

Geometric parameters (Å, °)

Hg1—N82.298 (2)C9—H9A0.97
Hg1—N12.387 (3)C9—H9B0.97
Hg1—Cl22.3895 (8)C10—C151.365 (5)
Hg1—Cl12.4010 (8)C10—C111.380 (5)
N1—C61.334 (4)C11—C121.248 (17)
N1—C21.340 (4)C11—C12A1.58 (2)
C2—C31.375 (5)C11—H110.93
C2—H20.93C12—C131.403 (19)
C3—C41.365 (5)C12—H120.93
C3—H30.93C13—C141.35 (3)
C4—C51.375 (5)C13—H130.93
C4—H40.93C14—C151.524 (19)
C5—C61.386 (4)C14—H140.93
C5—H50.93C12A—C13A1.37 (3)
C6—C71.506 (4)C12A—H12A0.93
C7—N81.475 (4)C13A—C14A1.36 (2)
C7—H7A0.97C13A—H13A0.93
C7—H7B0.97C14A—C151.25 (2)
N8—C91.486 (4)C14A—H14A0.93
N8—H80.89 (4)C15—H150.93
C9—C101.489 (5)
N8—Hg1—N172.83 (9)N8—C9—C10110.7 (3)
N8—Hg1—Cl2123.37 (7)N8—C9—H9A109.5
N1—Hg1—Cl2107.11 (7)C10—C9—H9A109.5
N8—Hg1—Cl1110.18 (7)N8—C9—H9B109.5
N1—Hg1—Cl1107.67 (7)C10—C9—H9B109.5
Cl2—Hg1—Cl1122.31 (3)H9A—C9—H9B108.1
C6—N1—C2118.8 (3)C15—C10—C11118.6 (4)
C6—N1—Hg1113.8 (2)C15—C10—C9120.6 (4)
C2—N1—Hg1127.4 (2)C11—C10—C9120.8 (4)
N1—C2—C3122.5 (3)C12—C11—C10133.4 (14)
N1—C2—H2118.7C10—C11—C12A109.8 (9)
C3—C2—H2118.7C12—C11—H11113.3
C4—C3—C2118.5 (3)C10—C11—H11113.3
C4—C3—H3120.7C11—C12—C13112.4 (18)
C2—C3—H3120.7C11—C12—H12123.8
C3—C4—C5119.7 (3)C13—C12—H12123.8
C3—C4—H4120.1C14—C13—C12122 (2)
C5—C4—H4120.1C14—C13—H13119.1
C4—C5—C6119.0 (3)C12—C13—H13119.1
C4—C5—H5120.5C13—C14—C15122.2 (14)
C6—C5—H5120.5C13—C14—H14118.9
N1—C6—C5121.4 (3)C15—C14—H14118.9
N1—C6—C7117.8 (3)C13A—C12A—C11122.2 (15)
C5—C6—C7120.8 (3)C13A—C12A—H12A118.9
N8—C7—C6113.2 (2)C11—C12A—H12A118.9
N8—C7—H7A108.9C14A—C13A—C12A120 (2)
C6—C7—H7A108.9C14A—C13A—H13A119.8
N8—C7—H7B108.9C12A—C13A—H13A119.8
C6—C7—H7B108.9C15—C14A—C13A115 (2)
H7A—C7—H7B107.8C15—C14A—H14A122.5
C7—N8—C9112.7 (2)C13A—C14A—H14A122.5
C7—N8—Hg1109.47 (18)C14A—C15—C10133.5 (13)
C9—N8—Hg1113.3 (2)C10—C15—C14111.4 (11)
C7—N8—H8108 (2)C14A—C15—H15101.8
C9—N8—H8107 (2)C10—C15—H15124.3
Hg1—N8—H8106 (2)C14—C15—H15124.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2i0.89 (4)2.44 (4)3.297 (3)163 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2337).

References

  • Atoub, N., Mahmoudi, G. & Morsali, A. (2007). Inorg. Chem. Commun.10, 166–169.
  • Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Das, S., Hung, C.-H. & Goswami, S. (2003). Inorg. Chem.42, 8592–8597. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Haneline, M. R., Tsunoda, M. & Gabbai, F. P. (2002). J. Am. Chem. Soc.124, 3737–3742. [PubMed]
  • Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810–m2811.
  • Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358. [PMC free article] [PubMed]
  • Ojida, A., Miti-oka, Y., Sada, K. & Hamachi, I. (2004). J. Am. Chem. Soc.126, 2454–2463. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yordanov, A. T. & Roundhill, D. M. (1998). Coord. Chem. Rev.170, 93–124.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography