PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m52.
Published online 2008 December 13. doi:  10.1107/S1600536808040944
PMCID: PMC2967895

Dimethyl 7a-carbonyl-2-meth­oxy-7a,7a-bis­(triphenyl­phosphino)-7a-ruthena-1-benzofuran-4,7-dicarboxyl­ate

Abstract

The crystal structure of the title compound, [Ru(C12H12O6)(C18H15P)2(CO)], confirms its formulation as a ruthenabenzofuran, with a slightly distorted octa­hedral coordination environment at the RuII ion, and mutually trans triphenyl­phosphine ligands. The metallabicyclic ring system is essentially planar (maximum deviation 0.059 Å).

Related literature

For the synthesis and properties of metallabenzenes, see: Bleeke (2001 [triangle]); Landorf & Haley (2006 [triangle]); Wright (2006 [triangle]). For the synthesis and properties of metallabenzeno­ids, see: Paneque et al. (2003 [triangle]); Clark et al. (2006 [triangle]); Yamazaki & Aoki (1976 [triangle]); Bruce et al. (2000 [triangle]); Clark et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m52-scheme1.jpg

Experimental

Crystal data

  • [Ru(C12H12O6)(C18H15P)2(CO)]
  • M r = 905.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m52-efi1.jpg
  • a = 12.1102 (5) Å
  • b = 13.2229 (5) Å
  • c = 13.4273 (5) Å
  • α = 97.746 (1)°
  • β = 102.616 (1)°
  • γ = 93.333 (1)°
  • V = 2070.54 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.51 mm−1
  • T = 85 (2) K
  • 0.28 × 0.22 × 0.20 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.806, T max = 0.921
  • 20010 measured reflections
  • 8434 independent reflections
  • 6871 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.071
  • S = 1.04
  • 8434 reflections
  • 532 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040944/lh2738sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040944/lh2738Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity, aromatic character and decomposition pathways of these materials have been made (Bleeke, 2001, Landorf & Haley, 2006, Wright, 2006). In contrast, studies of fused ring metallabenzenoids such as metallanaphthalenes (Paneque et al., 2003) and metallabenzofurans (Clark et al., 2006) are much more rare. We recently reported that protonation of a carbon atom in the five-membered ruthenafuran ring of the known ruthenabenzofuran, Ru[C5H2(CO2Me-2)(CO2Me-4)(CHCO2Me-5)](CO)(PPh3)2(2) (see Fig. 2) (Yamazaki & Aoki, 1976, Bruce et al., 2000) provides a new route to ruthenabenzenes (Clark et al., 2009). While following the literature synthesis of this ruthenabenzofuran, (Yamazaki & Aoki, 1976), we were able to isolate through chromatography a small amount of a previously unreported, isomeric ruthenabenzofuran, Ru[C5H2(CO2Me-1)(CO2Me-4)(CHCO2Me-5)](CO)(PPh3)2 (1) (see Fig. 2). We now report details of the structure of (1) (Fig. 1) which confirms its formulation as a ruthenabenzofuran, with essentially octahedral coordination at Ru, and mutually trans triphenylphosphine ligands. The metallabicyclic ring system is essentially planar. The C—C bond lengths within the six-membered ring show a small but significant alternation, similar to that reported in the isomeric ruthenabenzofuran (Bruce et al., 2000) in which one of the methyl ester substituents resides on C2 rather than C1. This change has no important impact on the structural parameters of the metallabicyclic ring system. The bond length alternations in these two ruthenabenzofuran isomers are more pronounced than in the tethered ruthenabenzene derived from the isomer reported by Bruce (Bruce et al., 2000) by protonation at C6 (Clark et al., 2009).

Experimental

RuH2(CO)(PPh3)3 (1.00 g, 1.09 mmol) and methyl propiolate (0.55 g, 0.58 ml, 6.54 mmol) were heated under reflux in benzene (50 ml) for one hour. The initially pale yellow-green solution changed to red-brown soon after the solution reached boiling point. The solvent was removed under vacuum and the residue purified by chromatography on silica gel using dichloromethane/ethanol (98:2) as eluent. Two coloured bands were eluted from the column. The first band, which was coloured blue, was collected and on evaporation of the solvent dark blue crystals of the title compound were obtained (0.0098 g, 1%). The second, much larger red-purple band contained the related ruthenabenzofuran, Ru[C5H2(CO2Me-2)(CO2Me-4)(CHCO2Me-5)](CO)(PPh3)2 (2), previously reported in the literature (Yamazaki & Aoki, 1976). The crystal of Ru[C5H2(CO2Me-1)(CO2Me-4)(CHCO2Me-5)](CO) (PPh3)2 (1) that was used for the single-crystal X-ray diffraction study was grown from dichloromethane/ethanol solution. The atom numbering used for NMR assignments is given in Fig. 2. 1H NMR (CDCl3, δ p.p.m., TMS = 0.00), 7.10 - 7.75 (m, 30H, PPh3), 6.58 (dt, 1H, 4JHH = 8.1 Hz, 4JHP = 1.9 Hz, H2), 6.53 (d, 1H, 4JHH = 8.1 Hz, H3), 6.02 (t, 1H, 4JHP = 3.5 Hz, H6), 3.59 (s, 3H, CO2CH3, H10), 3.33 (s, 3H, CO2CH3, H12), 3.18 (s, 3H, CO2CH3, H13). 13C{1H} NMR (CDCl3, δ p.p.m., TMS = 0.00), 225.8 (2JCP = 13.6 Hz, C5), 205.3 (2JCP = 13.1 Hz, CO, C8), 194.9 (t, 2JCP = 13.1, C1), 179.4 (s, CO2Me, C7), 175.8 (s, CO2Me, C11), 168.0 (s, CO2Me, C9), 147.5 (s, CH, C3), 126–135 (m, PPh3), 129.6 (s, CH, C2), 124.4 (s, C4), 121.0 (t, CH, 3JCP = 4.5, C6), 51.9 (s, CO2CH3, C13), 51.2 (s, CO2CH3, C12), 50.5 (s, CO2CH3, C10). 31P{1H} NMR (CDCl3, δ p.p.m., 85% orthophosphoric acid external std. = 0.00), 39.27 (s).

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
: The molecular structure showing 50% probability displacement ellipsoids for non-hydrogen atoms and selected hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996).
Fig. 2.
: The reaction scheme.

Crystal data

[Ru(C12H12O6)(C18H15P)2(CO)]Z = 2
Mr = 905.89F(000) = 932
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1102 (5) ÅCell parameters from 5960 reflections
b = 13.2229 (5) Åθ = 1.6–26.4°
c = 13.4273 (5) ŵ = 0.51 mm1
α = 97.746 (1)°T = 85 K
β = 102.616 (1)°Block, purple
γ = 93.333 (1)°0.28 × 0.22 × 0.20 mm
V = 2070.54 (14) Å3

Data collection

Siemens SMART CCD diffractometer8434 independent reflections
Radiation source: fine-focus sealed tube6871 reflections with I > 2σ(I)
graphiteRint = 0.028
Area detector ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→14
Tmin = 0.807, Tmax = 0.921k = −16→16
20010 measured reflectionsl = 0→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.022P)2 + 1.4641P] where P = (Fo2 + 2Fc2)/3
8434 reflections(Δ/σ)max < 0.001
532 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru0.216450 (16)0.201239 (14)0.215449 (14)0.01165 (6)
P10.15355 (5)0.11361 (4)0.33937 (4)0.01214 (13)
P20.27620 (5)0.30884 (4)0.10386 (4)0.01183 (13)
O10.46834 (15)0.07527 (12)0.23988 (13)0.0231 (4)
O20.56152 (14)0.23144 (12)0.26121 (13)0.0197 (4)
O30.12784 (15)0.53793 (13)0.40538 (13)0.0232 (4)
O40.26131 (15)0.51234 (13)0.54176 (12)0.0210 (4)
O5−0.11237 (14)0.29881 (13)0.14179 (13)0.0194 (4)
O60.03690 (13)0.20657 (12)0.13497 (11)0.0143 (3)
O70.23080 (15)−0.01145 (13)0.10036 (13)0.0244 (4)
C10.3802 (2)0.22584 (17)0.29898 (17)0.0136 (5)
C20.4191 (2)0.30178 (17)0.38134 (17)0.0148 (5)
H20.49560.30430.41360.018*
C30.3557 (2)0.37805 (17)0.42395 (17)0.0151 (5)
H30.39420.41910.48490.018*
C40.2460 (2)0.39826 (17)0.38648 (17)0.0133 (5)
C50.1714 (2)0.33467 (17)0.29668 (17)0.0133 (5)
C60.0607 (2)0.35233 (17)0.26249 (17)0.0150 (5)
H60.02900.40730.29310.018*
C7−0.0038 (2)0.28123 (18)0.17665 (17)0.0153 (5)
C80.4716 (2)0.16743 (18)0.26509 (17)0.0164 (5)
C90.6523 (2)0.1826 (2)0.2262 (2)0.0304 (7)
H9A0.71190.23370.22600.046*
H9B0.62410.14620.15760.046*
H9C0.68150.13550.27180.046*
C100.2040 (2)0.48872 (17)0.44205 (18)0.0151 (5)
C110.2193 (2)0.5936 (2)0.60212 (19)0.0273 (6)
H11A0.26490.60510.67140.041*
H11B0.14190.57460.60310.041*
H11C0.22320.65520.57200.041*
C12−0.1756 (2)0.2300 (2)0.05143 (19)0.0243 (6)
H12A−0.25170.24920.03290.036*
H12B−0.17750.16100.06650.036*
H12C−0.13930.2341−0.00490.036*
C130.2325 (2)0.07083 (18)0.14256 (18)0.0152 (5)
C210.1726 (2)0.18875 (17)0.46847 (17)0.0139 (5)
C220.2708 (2)0.18608 (18)0.54457 (18)0.0170 (5)
H220.32640.14420.53070.020*
C230.2864 (2)0.24553 (18)0.64120 (18)0.0203 (5)
H230.35220.24280.69130.024*
C240.2055 (2)0.30838 (19)0.66338 (19)0.0233 (6)
H240.21570.34670.72860.028*
C250.1084 (2)0.31427 (18)0.58767 (19)0.0203 (5)
H250.05430.35770.60180.024*
C260.0922 (2)0.25548 (17)0.49108 (18)0.0160 (5)
H260.02730.26030.44070.019*
C310.2151 (2)−0.00574 (17)0.37078 (17)0.0146 (5)
C320.3329 (2)−0.00963 (19)0.38983 (19)0.0204 (5)
H320.37870.04490.37900.024*
C330.3820 (2)−0.09495 (19)0.4250 (2)0.0242 (6)
H330.4605−0.09640.43870.029*
C340.3147 (2)−0.17755 (18)0.43951 (19)0.0217 (6)
H340.3480−0.23340.46460.026*
C350.1978 (2)−0.17655 (18)0.41653 (18)0.0203 (5)
H350.1523−0.23290.42390.024*
C360.1480 (2)−0.09131 (18)0.38229 (17)0.0180 (5)
H360.0694−0.09130.36690.022*
C410.0027 (2)0.06660 (17)0.30360 (17)0.0141 (5)
C42−0.0622 (2)0.05808 (18)0.37681 (18)0.0168 (5)
H42−0.03230.08670.44530.020*
C43−0.1705 (2)0.00757 (18)0.34865 (19)0.0212 (5)
H43−0.21270.00240.39820.025*
C44−0.2159 (2)−0.03522 (19)0.24688 (19)0.0220 (6)
H44−0.2884−0.06930.22810.026*
C45−0.1530 (2)−0.02715 (18)0.17315 (19)0.0196 (5)
H45−0.1838−0.05550.10470.023*
C46−0.0442 (2)0.02310 (17)0.20093 (18)0.0165 (5)
H46−0.00240.02780.15110.020*
C510.38367 (19)0.26988 (18)0.03145 (17)0.0149 (5)
C520.4375 (2)0.34274 (19)−0.01348 (18)0.0195 (5)
H520.42340.4112−0.00140.023*
C530.5115 (2)0.3138 (2)−0.07585 (19)0.0231 (6)
H530.54840.3631−0.10350.028*
C540.5305 (2)0.2114 (2)−0.09690 (18)0.0223 (6)
H540.57810.1917−0.14040.027*
C550.4783 (2)0.13849 (19)−0.05308 (19)0.0215 (6)
H550.49150.0699−0.06660.026*
C560.4061 (2)0.16786 (18)0.01122 (18)0.0172 (5)
H560.37240.11860.04120.021*
C610.3378 (2)0.43490 (17)0.17463 (17)0.0132 (5)
C620.4539 (2)0.44975 (18)0.22122 (17)0.0155 (5)
H620.50090.39880.20810.019*
C630.4998 (2)0.53969 (18)0.28686 (18)0.0172 (5)
H630.57680.54820.31850.021*
C640.4307 (2)0.61687 (18)0.30531 (18)0.0185 (5)
H640.46150.67740.34880.022*
C650.3157 (2)0.60363 (17)0.25872 (18)0.0171 (5)
H650.26960.65570.27050.021*
C660.2690 (2)0.51291 (17)0.19447 (17)0.0159 (5)
H660.19150.50410.16450.019*
C710.1656 (2)0.33729 (17)−0.00414 (17)0.0144 (5)
C720.1657 (2)0.43049 (19)−0.04171 (18)0.0201 (5)
H720.22050.4837−0.00860.024*
C730.0844 (2)0.4447 (2)−0.12838 (19)0.0230 (6)
H730.08410.5077−0.15210.028*
C740.0037 (2)0.3651 (2)−0.17950 (19)0.0235 (6)
H74−0.05060.3745−0.23740.028*
C750.0044 (2)0.2714 (2)−0.14401 (18)0.0214 (6)
H75−0.04890.2176−0.17870.026*
C760.0843 (2)0.25779 (18)−0.05686 (17)0.0161 (5)
H760.08380.1949−0.03320.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru0.01137 (10)0.01228 (9)0.01083 (9)0.00130 (7)0.00208 (7)0.00070 (7)
P10.0119 (3)0.0124 (3)0.0115 (3)0.0009 (2)0.0017 (2)0.0017 (2)
P20.0116 (3)0.0131 (3)0.0105 (3)0.0014 (2)0.0019 (2)0.0014 (2)
O10.0226 (10)0.0171 (9)0.0299 (10)0.0043 (7)0.0076 (8)0.0006 (8)
O20.0134 (9)0.0197 (9)0.0259 (9)0.0021 (7)0.0073 (7)−0.0017 (7)
O30.0259 (10)0.0210 (9)0.0206 (9)0.0107 (8)0.0012 (8)−0.0010 (7)
O40.0249 (10)0.0211 (9)0.0137 (8)0.0077 (7)0.0003 (7)−0.0053 (7)
O50.0104 (9)0.0228 (9)0.0218 (9)0.0017 (7)−0.0012 (7)−0.0004 (7)
O60.0133 (9)0.0172 (8)0.0114 (8)0.0010 (7)0.0013 (7)0.0010 (7)
O70.0305 (11)0.0170 (9)0.0240 (10)−0.0009 (8)0.0078 (8)−0.0037 (8)
C10.0142 (12)0.0151 (11)0.0124 (11)0.0021 (9)0.0032 (9)0.0044 (9)
C20.0105 (12)0.0202 (12)0.0134 (11)0.0021 (9)0.0002 (9)0.0052 (10)
C30.0198 (13)0.0153 (11)0.0092 (11)−0.0014 (10)0.0021 (10)0.0016 (9)
C40.0151 (12)0.0125 (11)0.0129 (11)0.0007 (9)0.0037 (9)0.0036 (9)
C50.0161 (12)0.0145 (11)0.0101 (11)−0.0003 (9)0.0030 (9)0.0049 (9)
C60.0151 (13)0.0154 (11)0.0146 (12)0.0015 (9)0.0046 (10)0.0009 (9)
C70.0124 (12)0.0209 (12)0.0141 (11)0.0012 (10)0.0032 (10)0.0080 (10)
C80.0132 (12)0.0208 (13)0.0131 (12)0.0021 (10)−0.0011 (10)0.0016 (10)
C90.0175 (14)0.0331 (16)0.0389 (17)0.0047 (12)0.0111 (12)−0.0093 (13)
C100.0153 (13)0.0137 (11)0.0154 (12)−0.0027 (9)0.0038 (10)0.0004 (9)
C110.0376 (17)0.0237 (14)0.0183 (13)0.0090 (12)0.0056 (12)−0.0061 (11)
C120.0133 (13)0.0323 (15)0.0220 (13)−0.0004 (11)−0.0031 (10)−0.0014 (11)
C130.0125 (12)0.0191 (13)0.0149 (12)0.0017 (9)0.0035 (10)0.0054 (10)
C210.0181 (13)0.0125 (11)0.0119 (11)−0.0016 (9)0.0054 (10)0.0029 (9)
C220.0160 (13)0.0168 (12)0.0185 (12)−0.0005 (10)0.0055 (10)0.0022 (10)
C230.0206 (14)0.0226 (13)0.0142 (12)−0.0068 (10)−0.0008 (10)0.0029 (10)
C240.0290 (15)0.0236 (13)0.0159 (12)−0.0053 (11)0.0080 (11)−0.0039 (10)
C250.0236 (14)0.0169 (12)0.0220 (13)−0.0009 (10)0.0116 (11)−0.0006 (10)
C260.0185 (13)0.0148 (11)0.0154 (12)−0.0007 (10)0.0051 (10)0.0037 (9)
C310.0171 (13)0.0146 (11)0.0117 (11)0.0020 (10)0.0031 (10)0.0003 (9)
C320.0194 (14)0.0181 (12)0.0241 (13)0.0016 (10)0.0057 (11)0.0039 (10)
C330.0198 (14)0.0255 (14)0.0275 (14)0.0077 (11)0.0039 (11)0.0048 (11)
C340.0292 (15)0.0147 (12)0.0218 (13)0.0082 (11)0.0059 (11)0.0021 (10)
C350.0266 (15)0.0144 (12)0.0191 (13)0.0009 (10)0.0051 (11)0.0004 (10)
C360.0209 (13)0.0174 (12)0.0145 (12)0.0030 (10)0.0026 (10)0.0003 (10)
C410.0136 (12)0.0134 (11)0.0150 (12)0.0007 (9)0.0014 (9)0.0039 (9)
C420.0182 (13)0.0166 (12)0.0153 (12)0.0014 (10)0.0031 (10)0.0029 (10)
C430.0195 (14)0.0215 (13)0.0237 (13)−0.0014 (10)0.0067 (11)0.0059 (11)
C440.0154 (13)0.0214 (13)0.0268 (14)−0.0044 (10)0.0007 (11)0.0044 (11)
C450.0191 (13)0.0181 (12)0.0176 (12)−0.0015 (10)−0.0015 (10)−0.0001 (10)
C460.0180 (13)0.0153 (12)0.0173 (12)0.0008 (10)0.0051 (10)0.0047 (10)
C510.0105 (12)0.0217 (12)0.0110 (11)0.0019 (10)0.0003 (9)0.0007 (10)
C520.0216 (14)0.0207 (13)0.0164 (12)0.0030 (10)0.0043 (10)0.0027 (10)
C530.0222 (14)0.0321 (15)0.0175 (13)0.0020 (11)0.0077 (11)0.0076 (11)
C540.0147 (13)0.0370 (15)0.0148 (12)0.0045 (11)0.0039 (10)0.0004 (11)
C550.0192 (14)0.0225 (13)0.0202 (13)0.0048 (11)0.0022 (11)−0.0029 (11)
C560.0151 (13)0.0191 (12)0.0159 (12)0.0005 (10)0.0023 (10)0.0001 (10)
C610.0138 (12)0.0144 (11)0.0114 (11)−0.0015 (9)0.0029 (9)0.0029 (9)
C620.0174 (13)0.0177 (12)0.0121 (11)0.0005 (10)0.0031 (10)0.0059 (9)
C630.0171 (13)0.0190 (12)0.0149 (12)−0.0034 (10)0.0027 (10)0.0036 (10)
C640.0232 (14)0.0154 (12)0.0162 (12)−0.0051 (10)0.0068 (10)−0.0011 (10)
C650.0197 (13)0.0141 (11)0.0187 (12)0.0010 (10)0.0077 (10)0.0012 (10)
C660.0162 (13)0.0184 (12)0.0143 (12)0.0002 (10)0.0055 (10)0.0035 (10)
C710.0156 (12)0.0170 (12)0.0103 (11)0.0029 (9)0.0030 (9)0.0006 (9)
C720.0227 (14)0.0190 (12)0.0180 (12)0.0042 (10)0.0033 (11)0.0018 (10)
C730.0275 (15)0.0219 (13)0.0201 (13)0.0106 (11)0.0024 (11)0.0064 (11)
C740.0172 (14)0.0406 (16)0.0126 (12)0.0115 (12)0.0012 (10)0.0029 (11)
C750.0166 (13)0.0313 (14)0.0141 (12)−0.0006 (11)0.0032 (10)−0.0027 (11)
C760.0169 (13)0.0202 (12)0.0106 (11)0.0010 (10)0.0027 (10)0.0014 (9)

Geometric parameters (Å, °)

Ru—C131.907 (2)C31—C361.400 (3)
Ru—C12.038 (2)C32—C331.396 (3)
Ru—C52.110 (2)C32—H320.9300
Ru—O62.2164 (16)C33—C341.385 (4)
Ru—P12.3796 (6)C33—H330.9300
Ru—P22.3919 (6)C34—C351.383 (4)
P1—C411.833 (2)C34—H340.9300
P1—C211.838 (2)C35—C361.394 (3)
P1—C311.845 (2)C35—H350.9300
P2—C611.832 (2)C36—H360.9300
P2—C711.842 (2)C41—C421.397 (3)
P2—C511.844 (2)C41—C461.400 (3)
O1—C81.216 (3)C42—C431.387 (3)
O2—C81.354 (3)C42—H420.9300
O2—C91.440 (3)C43—C441.385 (3)
O3—C101.214 (3)C43—H430.9300
O4—C101.352 (3)C44—C451.385 (4)
O4—C111.442 (3)C44—H440.9300
O5—C71.341 (3)C45—C461.391 (3)
O5—C121.450 (3)C45—H450.9300
O6—C71.248 (3)C46—H460.9300
O7—C131.154 (3)C51—C561.394 (3)
C1—C21.368 (3)C51—C521.404 (3)
C1—C81.501 (3)C52—C531.391 (3)
C2—C31.435 (3)C52—H520.9300
C2—H20.9300C53—C541.389 (4)
C3—C41.370 (3)C53—H530.9300
C3—H30.9300C54—C551.385 (4)
C4—C51.463 (3)C54—H540.9300
C4—C101.497 (3)C55—C561.392 (3)
C5—C61.363 (3)C55—H550.9300
C6—C71.432 (3)C56—H560.9300
C6—H60.9300C61—C661.397 (3)
C9—H9A0.9600C61—C621.399 (3)
C9—H9B0.9600C62—C631.388 (3)
C9—H9C0.9600C62—H620.9300
C11—H11A0.9600C63—C641.387 (3)
C11—H11B0.9600C63—H630.9300
C11—H11C0.9600C64—C651.388 (3)
C12—H12A0.9600C64—H640.9300
C12—H12B0.9600C65—C661.390 (3)
C12—H12C0.9600C65—H650.9300
C21—C221.394 (3)C66—H660.9300
C21—C261.406 (3)C71—C721.393 (3)
C22—C231.392 (3)C71—C761.397 (3)
C22—H220.9300C72—C731.392 (3)
C23—C241.377 (4)C72—H720.9300
C23—H230.9300C73—C741.389 (4)
C24—C251.390 (4)C73—H730.9300
C24—H240.9300C74—C751.386 (4)
C25—C261.387 (3)C74—H740.9300
C25—H250.9300C75—C761.386 (3)
C26—H260.9300C75—H750.9300
C31—C321.398 (3)C76—H760.9300
C13—Ru—C195.87 (9)C25—C26—H26119.6
C13—Ru—C5170.35 (9)C21—C26—H26119.6
C1—Ru—C591.76 (9)C32—C31—C36118.5 (2)
C13—Ru—O694.98 (8)C32—C31—P1119.50 (18)
C1—Ru—O6168.84 (7)C36—C31—P1121.94 (18)
C5—Ru—O677.73 (7)C33—C32—C31120.3 (2)
C13—Ru—P188.00 (7)C33—C32—H32119.9
C1—Ru—P193.61 (6)C31—C32—H32119.9
C5—Ru—P185.63 (6)C34—C33—C32120.5 (2)
O6—Ru—P189.36 (4)C34—C33—H33119.7
C13—Ru—P299.24 (7)C32—C33—H33119.7
C1—Ru—P285.74 (6)C35—C34—C33119.7 (2)
C5—Ru—P287.18 (6)C35—C34—H34120.1
O6—Ru—P289.96 (4)C33—C34—H34120.1
P1—Ru—P2172.76 (2)C34—C35—C36120.2 (2)
C41—P1—C21104.31 (11)C34—C35—H35119.9
C41—P1—C3199.28 (10)C36—C35—H35119.9
C21—P1—C31101.54 (10)C35—C36—C31120.8 (2)
C41—P1—Ru114.53 (8)C35—C36—H36119.6
C21—P1—Ru115.29 (7)C31—C36—H36119.6
C31—P1—Ru119.49 (8)C42—C41—C46118.5 (2)
C61—P2—C71104.49 (10)C42—C41—P1122.52 (17)
C61—P2—C51102.69 (11)C46—C41—P1118.21 (18)
C71—P2—C5198.77 (10)C43—C42—C41120.9 (2)
C61—P2—Ru111.47 (7)C43—C42—H42119.6
C71—P2—Ru116.69 (8)C41—C42—H42119.6
C51—P2—Ru120.55 (8)C44—C43—C42120.1 (2)
C8—O2—C9115.36 (19)C44—C43—H43120.0
C10—O4—C11115.26 (19)C42—C43—H43120.0
C7—O5—C12116.16 (18)C43—C44—C45119.9 (2)
C7—O6—Ru110.09 (14)C43—C44—H44120.1
C2—C1—C8114.3 (2)C45—C44—H44120.1
C2—C1—Ru124.54 (17)C44—C45—C46120.3 (2)
C8—C1—Ru120.77 (16)C44—C45—H45119.8
C1—C2—C3127.7 (2)C46—C45—H45119.8
C1—C2—H2116.1C45—C46—C41120.3 (2)
C3—C2—H2116.1C45—C46—H46119.8
C4—C3—C2128.4 (2)C41—C46—H46119.8
C4—C3—H3115.8C56—C51—C52118.1 (2)
C2—C3—H3115.8C56—C51—P2122.01 (18)
C3—C4—C5122.2 (2)C52—C51—P2119.59 (18)
C3—C4—C10117.1 (2)C53—C52—C51120.8 (2)
C5—C4—C10120.7 (2)C53—C52—H52119.6
C6—C5—C4122.0 (2)C51—C52—H52119.6
C6—C5—Ru113.07 (16)C54—C53—C52120.0 (2)
C4—C5—Ru124.71 (16)C54—C53—H53120.0
C5—C6—C7116.0 (2)C52—C53—H53120.0
C5—C6—H6122.0C55—C54—C53119.9 (2)
C7—C6—H6122.0C55—C54—H54120.0
O6—C7—O5120.6 (2)C53—C54—H54120.0
O6—C7—C6123.1 (2)C54—C55—C56120.0 (2)
O5—C7—C6116.3 (2)C54—C55—H55120.0
O1—C8—O2121.8 (2)C56—C55—H55120.0
O1—C8—C1126.9 (2)C55—C56—C51121.1 (2)
O2—C8—C1111.25 (19)C55—C56—H56119.4
O2—C9—H9A109.5C51—C56—H56119.4
O2—C9—H9B109.5C66—C61—C62118.7 (2)
H9A—C9—H9B109.5C66—C61—P2121.15 (18)
O2—C9—H9C109.5C62—C61—P2119.62 (18)
H9A—C9—H9C109.5C63—C62—C61120.7 (2)
H9B—C9—H9C109.5C63—C62—H62119.6
O3—C10—O4121.5 (2)C61—C62—H62119.6
O3—C10—C4126.2 (2)C64—C63—C62120.0 (2)
O4—C10—C4112.3 (2)C64—C63—H63120.0
O4—C11—H11A109.5C62—C63—H63120.0
O4—C11—H11B109.5C63—C64—C65119.9 (2)
H11A—C11—H11B109.5C63—C64—H64120.1
O4—C11—H11C109.5C65—C64—H64120.1
H11A—C11—H11C109.5C64—C65—C66120.3 (2)
H11B—C11—H11C109.5C64—C65—H65119.8
O5—C12—H12A109.5C66—C65—H65119.8
O5—C12—H12B109.5C65—C66—C61120.4 (2)
H12A—C12—H12B109.5C65—C66—H66119.8
O5—C12—H12C109.5C61—C66—H66119.8
H12A—C12—H12C109.5C72—C71—C76118.6 (2)
H12B—C12—H12C109.5C72—C71—P2123.32 (18)
O7—C13—Ru172.5 (2)C76—C71—P2117.82 (17)
C22—C21—C26118.1 (2)C73—C72—C71120.6 (2)
C22—C21—P1120.81 (18)C73—C72—H72119.7
C26—C21—P1120.95 (17)C71—C72—H72119.7
C23—C22—C21120.6 (2)C74—C73—C72120.1 (2)
C23—C22—H22119.7C74—C73—H73120.0
C21—C22—H22119.7C72—C73—H73120.0
C24—C23—C22120.7 (2)C75—C74—C73119.8 (2)
C24—C23—H23119.6C75—C74—H74120.1
C22—C23—H23119.6C73—C74—H74120.1
C23—C24—C25119.6 (2)C74—C75—C76120.0 (2)
C23—C24—H24120.2C74—C75—H75120.0
C25—C24—H24120.2C76—C75—H75120.0
C26—C25—C24120.1 (2)C75—C76—C71120.9 (2)
C26—C25—H25119.9C75—C76—H76119.5
C24—C25—H25119.9C71—C76—H76119.5
C25—C26—C21120.8 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2738).

References

  • Bleeke, J. R. (2001). Chem. Rev.101, 1205–1227. [PubMed]
  • Bruce, M. I., Hall, B. C., Skelton, B. W., Tiekink, E. R. T., White, A. H. & Zaitseva, N. N. (2000). Aust. J. Chem.53, 99–107.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Clark, G. R., Johns, P. M., Roper, W. R. & Wright, L. J. (2006). Organometallics, 25, 1771–1777.
  • Clark, G. R., O’Neale, T. R., Roper, W. R., Tonei, D. M. & Wright, L. J. (2008). Organometallics In the press.
  • Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed.45, 3914–3936. [PubMed]
  • Paneque, M., Posadas, C. M., Poveda, M. L., Rendón, N., Salazar, V., Onate, E. & Mereiter, K. J. (2003). J. Am. Chem. Soc.125, 9898–9899. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wright, L. J. (2006). Dalton Trans. pp. 1821–1827. [PubMed]
  • Yamazaki, H. & Aoki, K. (1976). J. Organomet. Chem.122, C54–C58.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography