PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m44.
Published online 2008 December 10. doi:  10.1107/S1600536808041354
PMCID: PMC2967889

Chlorido{N,N′-o-phenyl­ene-[6,6′-ethyl­enebis(pyridine-2-carboxamide)]}iron(III)

Abstract

In the title compound, [Fe(C20H14N4O2)Cl], the FeIII ion is in a distorted square-pyramidal environment, with two pyridine and two deprotonated amide N atoms in the basal plane and the Cl ion in the apical position. The FeIII ion is displaced from the basal plane of the square- pyramid towards the apical Cl atom by 0.2942 (4) Å. The mol­ecules are linked into a three-dimensional network by C—H(...)Cl and C—H(...)O hydrogen bonds.

Related literature

For general background, see: Liu et al. (2006 [triangle]); Yang et al. (2007 [triangle]); Momenteau & Reed (1994 [triangle]). For related structures, see: Rath et al. (2004 [triangle]); Xu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m44-scheme1.jpg

Experimental

Crystal data

  • [Fe(C20H14N4O2)Cl]
  • M r = 433.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m44-efi1.jpg
  • a = 11.8532 (2) Å
  • b = 8.2028 (1) Å
  • c = 19.3507 (3) Å
  • β = 106.889 (1)°
  • V = 1800.31 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 296 (2) K
  • 0.44 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996 [triangle]) T min = 0.778, T max = 1.000 (expected range = 0.703–0.904)
  • 24687 measured reflections
  • 4142 independent reflections
  • 3415 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.126
  • S = 1.01
  • 4142 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041354/ci2736sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041354/ci2736Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was sponsored by the Foundation of Yibin University.

supplementary crystallographic information

Comment

The chemistry of macrocyclic complexes has attracted the interest of both inorganic and bioinorganic chemists in recent years. Iron(III) complexes are involved in numerous biological redox reactions performed by metalloenzymes (Momenteau et al., 1994). As part of our studies on catalysis by N4 non-porphyrin complexes (Liu et al., 2006; Yang et al., 2007), we report here the crystal structure of a iron(III) complex with 1,2-[bis(6'-pyridine-2'-carboxamido)-ethane]benzene.

As shown in Fig.1, the complex has a five-coordinate structure with two pyridine and two deprotonated amide N atoms in the basal plane while the Cl ion is bonded to the FeIII center in the apical position. The geometry around the FeIII ion is approximately square-pyramidal. The Fe—N(amide) distances are shorter than the Fe—N(pyridine) distances (Table 1), both of which are shorter than the Fe—N distances found in the non-ring related Fe—N4 complexes such as [NEt4][Fe(bbpc)Cl2][H2bbpc is N,N'-(4,5-dichloro-o-phenylene)bis(4-tertbutylpyridine-2-carboxamide)] (Xu et al., 2007). The Fe—Cl distance of 2.3080 (8) Å is slightly shorter than that observed in [Fe(bbpc)Cl2](Et4N) (2.3299 (9) Å and 2.3880 (9) Å), while it is longer than that in [FeCl(meso-NH2-octaethylporphyrin)] (2.2596 (8) Å, Sankar et al., 2004).

In the crystalline state, the molecules are linked into a three-dimensional network by C—H···Cl and C—H···O hydrogen bonds (Table 2).

Experimental

1,2-[Bis(6'-pyridine-2'carboxamido)-ethane]benzene (132 mg, 0.38 mmol) and sodium acetate (80 mg, 0.76 mmol) were added to a stirred solution of FeCl3.6H2O (244 mg, 0.9 mmol) in CH3OH (20 ml). The colour of the mixture turned green almost immediately. The mixture was refluxed for 3 h and dark green microcrystals appeared. They were collected by filtration, washed with methanol, and air-dried. (123 mg, yield 75%). Single crystals suitable for X-ray diffraction were grown via diffusion of Et2O into a DMF solution of the complex. Selected IR data (KBr, cm-1):ν=1629 (C=O), 1602 (C—N), 1572, 1346, 1287, 1142, 1083, 1081, 762. MS (FAB): 398.3([Fe(bpeb)]+).

Refinement

All H atoms were positioned geometrically and refined as riding, with C-H = 0.93 Å (aromatic) or 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Fe(C20H14N4O2)Cl]F(000) = 884
Mr = 433.65Dx = 1.600 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9989 reflections
a = 11.8532 (2) Åθ = 2.2–27.4°
b = 8.2028 (1) ŵ = 1.01 mm1
c = 19.3507 (3) ÅT = 296 K
β = 106.889 (1)°Plate, black
V = 1800.31 (5) Å30.44 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4142 independent reflections
Radiation source: fine-focus sealed tube3415 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS, Sheldrick, 1996)h = −15→15
Tmin = 0.778, Tmax = 1.000k = −10→10
24687 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0642P)2 + 2.4383P] where P = (Fo2 + 2Fc2)/3
4142 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.45008 (3)0.56516 (5)0.62759 (2)0.02844 (13)
Cl10.49959 (7)0.48979 (10)0.74759 (4)0.0423 (2)
O10.1136 (2)0.6292 (4)0.61432 (18)0.0676 (8)
O20.5587 (2)0.2335 (3)0.51016 (14)0.0529 (6)
N10.2870 (2)0.5301 (3)0.59827 (14)0.0352 (5)
N20.4003 (2)0.7937 (3)0.64688 (12)0.0321 (5)
N30.6194 (2)0.5763 (3)0.62630 (12)0.0298 (5)
N40.44925 (19)0.3762 (3)0.57162 (12)0.0305 (5)
C10.2181 (3)0.6411 (4)0.61888 (17)0.0399 (7)
C20.2867 (3)0.7921 (4)0.64770 (16)0.0373 (6)
C30.2337 (3)0.9212 (4)0.67153 (19)0.0509 (9)
H3A0.15550.91560.67190.061*
C40.3014 (4)1.0606 (5)0.6950 (2)0.0564 (10)
H4A0.26961.14950.71270.068*
C50.4145 (4)1.0649 (4)0.69173 (18)0.0483 (8)
H5A0.45941.15850.70620.058*
C60.4643 (3)0.9306 (4)0.66690 (16)0.0377 (7)
C70.5853 (3)0.9393 (4)0.65875 (18)0.0443 (7)
H7A0.61591.04830.67160.053*
H7B0.58000.92220.60830.053*
C80.6751 (3)0.8146 (4)0.70492 (17)0.0418 (7)
H8A0.74680.87220.73010.050*
H8B0.64250.76830.74110.050*
C90.7061 (2)0.6787 (4)0.66208 (15)0.0352 (6)
C100.8207 (3)0.6559 (4)0.65877 (18)0.0453 (8)
H10A0.87940.72870.68240.054*
C110.8485 (3)0.5277 (5)0.62112 (19)0.0479 (8)
H11A0.92550.51240.61950.057*
C120.7599 (3)0.4217 (4)0.58564 (17)0.0413 (7)
H12A0.77600.33310.56000.050*
C130.6471 (2)0.4504 (3)0.58911 (15)0.0314 (6)
C140.5471 (2)0.3397 (4)0.55255 (15)0.0333 (6)
C150.2484 (2)0.3809 (4)0.56301 (16)0.0348 (6)
C160.1338 (3)0.3196 (4)0.5414 (2)0.0499 (8)
H16A0.07240.37730.55090.060*
C170.1128 (3)0.1721 (5)0.5056 (2)0.0590 (10)
H17A0.03640.13110.49050.071*
C180.2030 (3)0.0846 (4)0.4919 (2)0.0547 (9)
H18A0.1870−0.01530.46830.066*
C190.3178 (3)0.1438 (4)0.51280 (16)0.0414 (7)
H19A0.37890.08400.50410.050*
C200.3393 (2)0.2947 (3)0.54712 (15)0.0328 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0262 (2)0.0225 (2)0.0375 (2)−0.00026 (14)0.01073 (15)−0.00375 (15)
Cl10.0483 (4)0.0381 (4)0.0427 (4)0.0044 (3)0.0169 (3)0.0083 (3)
O10.0352 (13)0.0650 (18)0.109 (2)0.0042 (12)0.0307 (14)−0.0117 (17)
O20.0472 (13)0.0475 (14)0.0671 (15)0.0005 (11)0.0215 (11)−0.0268 (12)
N10.0278 (11)0.0299 (13)0.0484 (14)0.0000 (9)0.0119 (10)−0.0014 (10)
N20.0410 (13)0.0221 (11)0.0345 (12)0.0034 (10)0.0132 (10)−0.0013 (9)
N30.0287 (11)0.0274 (12)0.0334 (11)−0.0026 (9)0.0091 (9)−0.0020 (9)
N40.0301 (11)0.0237 (11)0.0370 (12)−0.0025 (9)0.0088 (9)−0.0049 (9)
C10.0337 (15)0.0377 (17)0.0515 (17)0.0065 (12)0.0175 (13)0.0020 (14)
C20.0424 (16)0.0333 (15)0.0396 (15)0.0099 (12)0.0173 (12)0.0021 (12)
C30.058 (2)0.047 (2)0.055 (2)0.0213 (17)0.0282 (17)0.0042 (16)
C40.083 (3)0.0406 (19)0.0494 (19)0.0225 (19)0.0254 (18)−0.0016 (15)
C50.076 (2)0.0272 (15)0.0401 (16)0.0053 (15)0.0136 (16)−0.0027 (13)
C60.0547 (18)0.0249 (14)0.0325 (14)0.0017 (13)0.0108 (12)0.0010 (11)
C70.0553 (19)0.0264 (15)0.0517 (18)−0.0103 (13)0.0166 (15)−0.0024 (13)
C80.0421 (16)0.0388 (17)0.0411 (16)−0.0095 (13)0.0069 (13)−0.0082 (13)
C90.0322 (14)0.0346 (15)0.0365 (14)−0.0063 (12)0.0066 (11)−0.0002 (12)
C100.0314 (15)0.051 (2)0.0500 (18)−0.0110 (14)0.0058 (13)0.0020 (15)
C110.0270 (14)0.063 (2)0.0540 (19)0.0007 (14)0.0126 (13)0.0059 (17)
C120.0330 (15)0.0472 (19)0.0462 (17)0.0054 (13)0.0154 (13)0.0001 (14)
C130.0311 (13)0.0311 (14)0.0321 (13)0.0019 (11)0.0092 (10)0.0020 (11)
C140.0339 (14)0.0296 (14)0.0360 (14)0.0024 (11)0.0094 (11)−0.0030 (11)
C150.0318 (14)0.0287 (14)0.0423 (15)−0.0045 (11)0.0084 (11)0.0036 (12)
C160.0325 (16)0.0450 (19)0.070 (2)−0.0058 (14)0.0115 (15)0.0041 (17)
C170.0431 (19)0.047 (2)0.079 (3)−0.0221 (16)0.0051 (17)0.0039 (19)
C180.063 (2)0.0346 (18)0.059 (2)−0.0211 (16)0.0073 (17)−0.0051 (15)
C190.0493 (18)0.0317 (16)0.0420 (16)−0.0082 (13)0.0114 (13)−0.0036 (13)
C200.0326 (14)0.0281 (14)0.0360 (14)−0.0047 (11)0.0073 (11)0.0012 (11)

Geometric parameters (Å, °)

Fe1—N11.871 (2)C7—C81.557 (5)
Fe1—N41.889 (2)C7—H7A0.97
Fe1—N32.016 (2)C7—H7B0.97
Fe1—N22.032 (2)C8—C91.497 (4)
Fe1—Cl12.3080 (8)C8—H8A0.97
O1—C11.220 (4)C8—H8B0.97
O2—C141.231 (3)C9—C101.392 (4)
N1—C11.358 (4)C10—C111.373 (5)
N1—C151.412 (4)C10—H10A0.93
N2—C61.348 (4)C11—C121.383 (5)
N2—C21.350 (4)C11—H11A0.93
N3—C91.352 (4)C12—C131.378 (4)
N3—C131.353 (4)C12—H12A0.93
N4—C141.349 (4)C13—C141.498 (4)
N4—C201.418 (3)C15—C161.394 (4)
C1—C21.498 (5)C15—C201.396 (4)
C2—C31.378 (4)C16—C171.380 (5)
C3—C41.395 (6)C16—H16A0.93
C3—H3A0.93C17—C181.376 (6)
C4—C51.361 (6)C17—H17A0.93
C4—H4A0.93C18—C191.390 (5)
C5—C61.399 (4)C18—H18A0.93
C5—H5A0.93C19—C201.392 (4)
C6—C71.490 (5)C19—H19A0.93
N1—Fe1—N482.38 (10)C8—C7—H7B108.5
N1—Fe1—N3161.28 (10)H7A—C7—H7B107.5
N4—Fe1—N382.51 (9)C9—C8—C7114.1 (3)
N1—Fe1—N282.39 (10)C9—C8—H8A108.7
N4—Fe1—N2155.32 (10)C7—C8—H8A108.7
N3—Fe1—N2107.69 (10)C9—C8—H8B108.7
N1—Fe1—Cl1101.67 (8)C7—C8—H8B108.7
N4—Fe1—Cl1108.32 (8)H8A—C8—H8B107.6
N3—Fe1—Cl193.53 (7)N3—C9—C10120.1 (3)
N2—Fe1—Cl193.71 (7)N3—C9—C8118.3 (3)
C1—N1—C15125.8 (3)C10—C9—C8121.7 (3)
C1—N1—Fe1117.7 (2)C11—C10—C9121.0 (3)
C15—N1—Fe1116.19 (19)C11—C10—H10A119.5
C6—N2—C2119.0 (3)C9—C10—H10A119.5
C6—N2—Fe1130.7 (2)C10—C11—C12118.7 (3)
C2—N2—Fe1109.69 (19)C10—C11—H11A120.6
C9—N3—C13118.7 (2)C12—C11—H11A120.6
C9—N3—Fe1129.3 (2)C13—C12—C11118.4 (3)
C13—N3—Fe1111.65 (18)C13—C12—H12A120.8
C14—N4—C20125.7 (2)C11—C12—H12A120.8
C14—N4—Fe1118.49 (18)N3—C13—C12123.1 (3)
C20—N4—Fe1115.45 (18)N3—C13—C14115.6 (2)
O1—C1—N1127.6 (3)C12—C13—C14121.3 (3)
O1—C1—C2121.5 (3)O2—C14—N4127.6 (3)
N1—C1—C2110.8 (2)O2—C14—C13121.2 (3)
N2—C2—C3123.4 (3)N4—C14—C13111.2 (2)
N2—C2—C1116.0 (2)C16—C15—C20119.9 (3)
C3—C2—C1120.6 (3)C16—C15—N1127.5 (3)
C2—C3—C4117.6 (3)C20—C15—N1112.5 (2)
C2—C3—H3A121.2C17—C16—C15119.0 (3)
C4—C3—H3A121.2C17—C16—H16A120.5
C5—C4—C3119.1 (3)C15—C16—H16A120.5
C5—C4—H4A120.4C18—C17—C16121.1 (3)
C3—C4—H4A120.4C18—C17—H17A119.4
C4—C5—C6121.0 (3)C16—C17—H17A119.4
C4—C5—H5A119.5C17—C18—C19120.8 (3)
C6—C5—H5A119.5C17—C18—H18A119.6
N2—C6—C5119.8 (3)C19—C18—H18A119.6
N2—C6—C7119.2 (3)C18—C19—C20118.5 (3)
C5—C6—C7120.9 (3)C18—C19—H19A120.7
C6—C7—C8115.3 (3)C20—C19—H19A120.7
C6—C7—H7A108.5C19—C20—C15120.6 (3)
C8—C7—H7A108.5C19—C20—N4127.0 (3)
C6—C7—H7B108.5C15—C20—N4112.4 (2)
N4—Fe1—N1—C1−176.9 (2)C2—N2—C6—C7−173.6 (3)
N3—Fe1—N1—C1−140.5 (3)Fe1—N2—C6—C716.6 (4)
N2—Fe1—N1—C1−16.3 (2)C4—C5—C6—N2−1.0 (5)
Cl1—Fe1—N1—C175.9 (2)C4—C5—C6—C7175.9 (3)
N4—Fe1—N1—C159.6 (2)N2—C6—C7—C8−63.1 (4)
N3—Fe1—N1—C1546.0 (4)C5—C6—C7—C8119.9 (3)
N2—Fe1—N1—C15170.1 (2)C6—C7—C8—C9107.4 (3)
Cl1—Fe1—N1—C15−97.6 (2)C13—N3—C9—C101.6 (4)
N1—Fe1—N2—C6−173.7 (3)Fe1—N3—C9—C10174.0 (2)
N4—Fe1—N2—C6−121.4 (3)C13—N3—C9—C8−178.2 (3)
N3—Fe1—N2—C6−9.9 (3)Fe1—N3—C9—C8−5.7 (4)
Cl1—Fe1—N2—C685.0 (2)C7—C8—C9—N3−62.5 (4)
N1—Fe1—N2—C215.76 (19)C7—C8—C9—C10117.7 (3)
N4—Fe1—N2—C268.1 (3)N3—C9—C10—C11−1.8 (5)
N3—Fe1—N2—C2179.57 (18)C8—C9—C10—C11177.9 (3)
Cl1—Fe1—N2—C2−85.53 (19)C9—C10—C11—C120.7 (5)
N1—Fe1—N3—C9150.2 (3)C10—C11—C12—C130.6 (5)
N4—Fe1—N3—C9−173.5 (3)C9—N3—C13—C12−0.3 (4)
N2—Fe1—N3—C929.6 (3)Fe1—N3—C13—C12−174.0 (2)
Cl1—Fe1—N3—C9−65.4 (2)C9—N3—C13—C14178.4 (2)
N1—Fe1—N3—C13−37.0 (4)Fe1—N3—C13—C144.7 (3)
N4—Fe1—N3—C13−0.60 (19)C11—C12—C13—N3−0.8 (5)
N2—Fe1—N3—C13−157.53 (18)C11—C12—C13—C14−179.4 (3)
Cl1—Fe1—N3—C13107.44 (18)C20—N4—C14—O21.6 (5)
N1—Fe1—N4—C14164.8 (2)Fe1—N4—C14—O2−171.3 (3)
N3—Fe1—N4—C14−4.1 (2)C20—N4—C14—C13−179.7 (2)
N2—Fe1—N4—C14112.5 (3)Fe1—N4—C14—C137.5 (3)
Cl1—Fe1—N4—C14−95.4 (2)N3—C13—C14—O2171.0 (3)
N1—Fe1—N4—C20−8.8 (2)C12—C13—C14—O2−10.3 (4)
N3—Fe1—N4—C20−177.7 (2)N3—C13—C14—N4−7.8 (4)
N2—Fe1—N4—C20−61.1 (3)C12—C13—C14—N4170.9 (3)
Cl1—Fe1—N4—C2091.03 (19)C1—N1—C15—C161.3 (5)
C15—N1—C1—O14.1 (6)Fe1—N1—C15—C16174.3 (3)
Fe1—N1—C1—O1−168.8 (3)C1—N1—C15—C20178.5 (3)
C15—N1—C1—C2−174.1 (3)Fe1—N1—C15—C20−8.6 (3)
Fe1—N1—C1—C213.1 (3)C20—C15—C16—C171.3 (5)
C6—N2—C2—C3−3.4 (4)N1—C15—C16—C17178.3 (3)
Fe1—N2—C2—C3168.4 (3)C15—C16—C17—C180.7 (6)
C6—N2—C2—C1175.0 (3)C16—C17—C18—C19−1.0 (6)
Fe1—N2—C2—C1−13.2 (3)C17—C18—C19—C20−0.8 (5)
O1—C1—C2—N2−176.9 (3)C18—C19—C20—C152.8 (5)
N1—C1—C2—N21.3 (4)C18—C19—C20—N4−179.2 (3)
O1—C1—C2—C31.5 (5)C16—C15—C20—C19−3.1 (5)
N1—C1—C2—C3179.8 (3)N1—C15—C20—C19179.5 (3)
N2—C2—C3—C40.8 (5)C16—C15—C20—N4178.7 (3)
C1—C2—C3—C4−177.5 (3)N1—C15—C20—N41.3 (4)
C2—C3—C4—C51.6 (5)C14—N4—C20—C1915.3 (5)
C3—C4—C5—C6−1.5 (5)Fe1—N4—C20—C19−171.7 (2)
C2—N2—C6—C53.4 (4)C14—N4—C20—C15−166.7 (3)
Fe1—N2—C6—C5−166.4 (2)Fe1—N4—C20—C156.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.932.803.595 (4)144
C10—H10A···Cl1ii0.932.713.617 (3)165
C11—H11A···O1iii0.932.463.290 (5)149

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2736).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, H. H., Wang, Y., Shu, Y. J., Zhou, X. G., Wu, J. & Yan, S. Y. (2006). J. Mol. Catal. A Chem.246, 49–52.
  • Momenteau, M. & Reed, C. A. (1994). Chem. Rev.94, 659–698.
  • Rath, S. P., Kalish, H., Latos-Grazyński, L. Olmstead, M. M. & Balch, A. L. (2004). J. Am. Chem. Soc.126, 646–654. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, X.-B., Yang, L., Qu, Y.-Y., Li, L.-X. & Zhou, X.-G. (2007). Acta Cryst. E63, m1790.
  • Yang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A Chem.266, 284–289.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography