PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m39.
Published online 2008 December 10. doi:  10.1107/S1600536808040543
PMCID: PMC2967885

Hydrogen bonding in substitutionally disordered di-μ-hydroxido-bis­{aqua­tri[bromido/chlorido(1/2)]tin(IV)} acetone disolvate

Abstract

The structure of the title compound, [Sn2Br1.97Cl4.03(OH)2(H2O)2]·2C3H6O, contains two hexa­coordinated Sn atoms bridged symmetrically by two hydroxide groups, with an inversion center in the middle of the planar Sn2O2 ring, half of the mol­ecule being generated by inversion symmetry. The other sites of the distorted octa­hedral coordination geometry are occupied by halide atoms and water mol­ecules. The structure exhibits substitutional disorder of the halide atoms bonded to the Sn atom, with 0.672 (4) occupancy for Cl and 0.328 (4) for Br for each halide position. The compound crystallizes with two acetone mol­ecules, which are involved in intra- and inter­molecular O—H(...)O contacts. The water mol­ecules coordinated to the Sn atoms are also involved in O—H(...)O and O—H(...)X contacts, leading to a polymeric array along the a axis.

Related literature

For related tin(IV) compounds, see: Barnes et al. (1980 [triangle]); Bokii & Struchkov (1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m39-scheme1.jpg

Experimental

Crystal data

  • [Sn2Br1.97Cl4.03(OH)2(H2O)2]·2C3H6O
  • M r = 723.80
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m39-efi1.jpg
  • a = 6.9057 (13) Å
  • b = 14.029 (3) Å
  • c = 11.400 (2) Å
  • β = 103.195 (4)°
  • V = 1075.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.55 mm−1
  • T = 297 (2) K
  • 0.21 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.278, T max = 0.329
  • 5535 measured reflections
  • 1891 independent reflections
  • 1641 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.102
  • S = 1.08
  • 1891 reflections
  • 106 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.92 e Å−3
  • Δρmin = −0.75 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040543/si2138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040543/si2138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National University Research Council (grant No. CEEX 63/2006) is greatly appreciated. We also thank the National Center for X-ray Diffraction in Cluj-Napoca for support in the structure determination.

supplementary crystallographic information

Comment

The title compound forms a dimeric structure with two aquatrihalidotin(IV) fragments bridged symmetrically by two hydroxo groups (Figure 1). Half of the molecule is generated by symmetry due to the presence of the inversion center in the middle of the Sn2O2 ring. This ring is planar and describes a rhomb with the endocyclic angles at O larger than those at the Sn atoms [Sn1—O1—Sn1i = 109.2 (2)°, O1—Sn1—O1i = 70.8 (2)°; symmetry code: (i) = -x + 1, -y + 1, -z + 1]. The tin atoms are hexacoordinated with the two hydroxo, three halides and one water molecule occupying the distorted octahedral positions around the metal centre. The tin atoms are out of the best plane described by O1/O1i/X1/X2 (X = Cl/Br) with 0.174 Å towards X3.

The compound exhibits substitutional disorder of the halide atoms bonded to the Sn with 0.672 occupancy for Cl and 0.328 for Br for each halide position.

The compound crystallizes with two acetone molecules, which establish two strong hydrogen bonds, one with the hydroxo group and one with the water from a neighboring dimer (Table 1). The water molecules are also involved in hydrogen bond type interactions with halide atoms, a strong one inside the dimeric unit and one intermolecular with a halide from another dimer (Table 1). The intramolecular interactions strengthen the dimeric unit and the intermolecular ones give rise to a polymer-like supramolecular arrangement along the a axis (Figure 2), with no further interactions between different chains (Figure 3).

Experimental

The title compound was obtained as a by-product after the work up of the crude reaction mixture obtained by reacting [2,6-(Me)2C6H3]MgBr and SnCl4.

Refinement

The hydrogen atoms of the methyl groups were placed in calculated positions and were allowed to rotate but not to tip, with C—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C). The three halide atoms were refined as substitutional disorder between chlorine and bromine, with 0.672 occupancy for Cl and 0.328 occupancy for Br for each position. Hydrogen atoms from the water molecule and hydroxyl group were found from a difference map and refined with a restrained O—H distance of 0.88 (5) Å,0.89 (9) Å and 0.79 (7) Å, with Uiso(H) = (1.5, 3.0, and 1.2)Ueq(O), respectively.

Figures

Fig. 1.
: View of the title compound showing the atom-numbering scheme at 30% probability thermal ellipsoids [symmetry code: (i) = -x + 1, -y + 1, -z + 1].
Fig. 2.
: Intra- and intermolecular interactions in the title compound (dashed lines; only H atoms involved in interactions are shown). Symmetry codes as in Table 1.
Fig. 3.
: Crystal packing of the title compound showing the supramolecular arrangement.

Crystal data

[Sn2Br1.97Cl4.03(OH)2(H2O)2]·2C3H6OF(000) = 680
Mr = 723.80Dx = 2.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1714 reflections
a = 6.9057 (13) Åθ = 2.3–24.6°
b = 14.029 (3) ŵ = 6.55 mm1
c = 11.400 (2) ÅT = 297 K
β = 103.195 (4)°Block, colourless
V = 1075.3 (4) Å30.21 × 0.20 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer1891 independent reflections
Radiation source: fine-focus sealed tube1641 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −7→8
Tmin = 0.278, Tmax = 0.329k = −16→13
5535 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.049P)2 + 2.7199P] where P = (Fo2 + 2Fc2)/3
1891 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.92 e Å3
2 restraintsΔρmin = −0.75 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O20.2519 (8)0.6291 (4)0.5292 (5)0.0490 (12)
Sn10.34131 (6)0.55296 (3)0.38433 (4)0.03550 (19)
O10.3796 (6)0.4390 (3)0.5018 (4)0.0370 (11)
O30.1078 (7)0.2974 (3)0.4886 (5)0.0535 (13)
C10.1355 (11)0.2115 (5)0.4779 (6)0.0475 (17)
C20.3092 (13)0.1783 (7)0.4365 (9)0.080 (3)
H2A0.27500.17150.35040.120*
H2B0.35170.11790.47290.120*
H2C0.41500.22390.45890.120*
C3−0.0070 (14)0.1438 (6)0.5094 (8)0.073 (3)
H3A−0.09280.17680.55120.109*
H3B0.06400.09470.56030.109*
H3C−0.08520.11570.43720.109*
Br20.3538 (2)0.70915 (9)0.29307 (11)0.0567 (4)0.328 (4)
Br30.4654 (2)0.46498 (12)0.23225 (13)0.0661 (5)0.328 (4)
Br1−0.0046 (2)0.51539 (12)0.30386 (13)0.0642 (5)0.328 (4)
Cl20.3538 (2)0.70915 (9)0.29307 (11)0.0567 (4)0.672 (4)
Cl30.4654 (2)0.46498 (12)0.23225 (13)0.0661 (5)0.672 (4)
Cl1−0.0046 (2)0.51539 (12)0.30386 (13)0.0642 (5)0.672 (4)
H20.128 (5)0.647 (6)0.520 (7)0.07 (3)*
H10.307 (11)0.396 (5)0.506 (6)0.04 (2)*
H30.282 (19)0.587 (7)0.589 (8)0.15 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.041 (3)0.052 (3)0.055 (3)0.016 (2)0.013 (2)0.008 (3)
Sn10.0296 (3)0.0384 (3)0.0370 (3)−0.00171 (19)0.00458 (19)0.00437 (19)
O10.026 (2)0.034 (3)0.048 (3)−0.008 (2)0.003 (2)0.010 (2)
O30.042 (3)0.033 (3)0.086 (4)0.000 (2)0.015 (3)0.001 (3)
C10.046 (4)0.046 (5)0.045 (4)0.001 (3)−0.002 (3)−0.003 (3)
C20.070 (6)0.073 (6)0.103 (7)0.003 (5)0.030 (6)−0.034 (6)
C30.092 (7)0.045 (5)0.077 (6)−0.013 (5)0.011 (5)0.004 (4)
Br20.0705 (9)0.0447 (8)0.0525 (7)−0.0056 (6)0.0091 (6)0.0170 (6)
Br30.0596 (9)0.0805 (11)0.0572 (8)0.0018 (7)0.0112 (7)−0.0109 (7)
Br10.0400 (8)0.0857 (11)0.0624 (8)−0.0056 (7)0.0025 (6)0.0144 (8)
Cl20.0705 (9)0.0447 (8)0.0525 (7)−0.0056 (6)0.0091 (6)0.0170 (6)
Cl30.0596 (9)0.0805 (11)0.0572 (8)0.0018 (7)0.0112 (7)−0.0109 (7)
Cl10.0400 (8)0.0857 (11)0.0624 (8)−0.0056 (7)0.0025 (6)0.0144 (8)

Geometric parameters (Å, °)

O2—Sn12.171 (5)O3—C11.230 (8)
O2—H20.88 (5)C1—C21.462 (11)
O2—H30.89 (9)C1—C31.470 (11)
Sn1—O12.064 (4)C2—H2A0.9600
Sn1—O1i2.066 (4)C2—H2B0.9600
Sn1—Br12.4138 (14)C2—H2C0.9600
Sn1—Br22.4357 (13)C3—H3A0.9600
Sn1—Br32.4376 (16)C3—H3B0.9600
O1—Sn1i2.066 (4)C3—H3C0.9600
O1—H10.79 (7)
Sn1—O2—H2119 (6)Sn1—O1—Sn1i109.2 (2)
Sn1—O2—H3102 (9)Sn1—O1—H1130 (5)
H2—O2—H3110 (10)Sn1i—O1—H1121 (5)
O1—Sn1—O1i70.8 (2)O3—C1—C2120.0 (7)
O1—Sn1—O284.5 (2)O3—C1—C3118.8 (7)
O1i—Sn1—O283.21 (19)C2—C1—C3121.2 (8)
O1—Sn1—Br192.67 (13)C1—C2—H2A109.5
O1i—Sn1—Br1162.00 (13)C1—C2—H2B109.5
O2—Sn1—Br188.16 (15)H2A—C2—H2B109.5
O1—Sn1—Br2164.26 (14)C1—C2—H2C109.5
O1i—Sn1—Br295.74 (13)H2A—C2—H2C109.5
O2—Sn1—Br285.79 (15)H2B—C2—H2C109.5
Br1—Sn1—Br299.36 (5)C1—C3—H3A109.5
O1—Sn1—Br393.18 (14)C1—C3—H3B109.5
O1i—Sn1—Br392.62 (14)H3A—C3—H3B109.5
O2—Sn1—Br3175.70 (14)C1—C3—H3C109.5
Br1—Sn1—Br395.57 (6)H3A—C3—H3C109.5
Br2—Sn1—Br395.70 (5)H3B—C3—H3C109.5
O1i—Sn1—O1—Sn1i0.0Br2—Sn1—O1—Sn1i−32.6 (6)
O2—Sn1—O1—Sn1i−84.7 (2)Br3—Sn1—O1—Sn1i91.67 (19)
Br1—Sn1—O1—Sn1i−172.60 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O30.79 (7)1.93 (7)2.714 (6)170 (7)
O2—H3···X3i0.89 (9)2.47 (10)3.244 (5)146 (8)
O2—H3···X1ii0.89 (9)2.88 (12)3.483 (6)127 (8)
O2—H2···O3ii0.88 (5)1.79 (5)2.654 (7)170 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2138).

References

  • Barnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949–953.
  • Bokii, N. G. & Struchkov, Yu. T. (1971). Zh. Strukt. Khim.12, 253–256.
  • Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography