PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m34.
Published online 2008 December 10. doi:  10.1107/S1600536808041044
PMCID: PMC2967880

catena-Poly[[(1,10-phenanthroline)cadmium(II)]-μ-2-(1,3-benzimidazol-2-ylsulfan­yl)acetato-κ3 N 1,O:N 3]

Abstract

In title compound, [Cd(C9H6N2O2S)(C12H8N2)]n, the CdII atom is in a distorted tetra­gonal-pyramidal environment, coordinated by one chelating 1,10-phenanthroline ligand, one chelating 2-(1,3-benzimidazol-2-ylsulfan­yl)acetate (bia) ligand bound through one N atom and one O atom of the carboxyl group, and one N atom from a second bia ligand. Each bia ligand acts as bridge between CdII ions, forming one-dimensional coordination polymers along [010], with a shortest Cd(...)Cd distance of 4.27 (2) Å.

Related literature

For related structures, see: Matthews et al. (1998 [triangle]); Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m34-scheme1.jpg

Experimental

Crystal data

  • [Cd(C9H6N2O2S)(C12H8N2)]
  • M r = 498.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m34-efi1.jpg
  • a = 9.2195 (10) Å
  • b = 8.2577 (9) Å
  • c = 25.620 (3) Å
  • β = 103.215 (4)°
  • V = 1898.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.783, T max = 0.831
  • 9820 measured reflections
  • 3724 independent reflections
  • 3413 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.091
  • S = 1.04
  • 3724 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041044/bi2328sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041044/bi2328Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

supplementary crystallographic information

Comment

Recently, there has been significant interest in the rational design and synthesis of metal-organic coordination architectures by using flexible bridging units because the flexibility and conformational freedom of such ligands offers the possibility for construction of unprecedented frameworks (Zhang et al. 2008). Benzimidazole and thioether carboxylates have been widely used to construct many novel and interesting metal-organic frameworks. However, such metal-organic frameworks formed by bifunctional ligands including benzimidazole and thioether carboxylate have been rarely reported (Matthews et al. 1998). Herein, we report a new bifunctional flexible ligand 2-(1H-benzo[d]imidazol-2-ylthio)acetic acid (H2bia), and present the synthesis and structural characterization of a one-dimensional coordination polymer {Cd(bia)(phen)}n (phen = 1,10-phenanthroline).

The asymmetric unit of the title compound, contains a CdII cation, a bia and a chelating phen. Each CdII displays a distorted tetragonal pyramidal geometry, being surrounded by one phen ligand, one chelating bia and a N atom of another bia ligand. Each bia ligand acts as a bridge between two CdII ions, forming one-dimensional coordination polymers along the b axis (Fig. 1). The shortest Cd···Cd distance in the chain is 4.27 (2) Å.

Experimental

A mixture of H2bia (0.0208 g, 0.1 mmol), phen (0.0180 g, 0.1 mmol), Cd(NO3)2.6H2O (0.0345 g, 0.1 mmol) and H2O (8 ml) was heated in a 15 ml Teflon-lined autoclave at 433 K for 3 days, followed by slow cooling (5 K h-1) to room temperature. The resulting mixture was washed with water, and colourless block crystals were collected and dried in air. Yield 86% (42.9 mg), based on MnII.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The one-dimensional chain of the title compound. Displacement ellipsoids are shown at 50% probability and H atoms are omitted for clarity.

Crystal data

[Cd(C9H6N2O2S)(C12H8N2)]F(000) = 992
Mr = 498.84Dx = 1.745 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 781 reflections
a = 9.2195 (10) Åθ = 2.4–28.0°
b = 8.2577 (9) ŵ = 1.29 mm1
c = 25.620 (3) ÅT = 293 K
β = 103.215 (4)°Block, colorless
V = 1898.8 (4) Å30.20 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer3724 independent reflections
Radiation source: fine-focus sealed tube3413 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −11→11
Tmin = 0.783, Tmax = 0.831k = −9→10
9820 measured reflectionsl = −31→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0401P)2 + 3.0611P] where P = (Fo2 + 2Fc2)/3
3724 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd1−0.02266 (3)−0.35415 (3)−0.160159 (10)0.03702 (11)
S1−0.16960 (11)−0.61304 (14)−0.27062 (4)0.0438 (2)
O1−0.2554 (4)−0.4866 (4)−0.42417 (12)0.0656 (9)
O2−0.1646 (3)−0.7175 (4)−0.38778 (11)0.0536 (8)
N10.0906 (3)−0.5378 (4)−0.20121 (12)0.0375 (7)
N20.1161 (3)−0.6933 (4)−0.27140 (12)0.0382 (7)
N3−0.2011 (4)−0.2403 (4)−0.11518 (12)0.0420 (8)
N4−0.0690 (3)−0.5365 (4)−0.09663 (12)0.0372 (7)
C10.3638 (5)−0.5327 (6)−0.15550 (18)0.0543 (11)
H1A0.3548−0.4674−0.12680.065*
C20.4989 (5)−0.5924 (7)−0.1596 (2)0.0638 (13)
H2A0.5829−0.5674−0.13310.077*
C30.5142 (5)−0.6896 (6)−0.2025 (2)0.0578 (12)
H3A0.6080−0.7285−0.20380.069*
C40.3944 (4)−0.7286 (6)−0.24257 (17)0.0481 (10)
H4A0.4049−0.7929−0.27130.058*
C50.2560 (4)−0.6688 (5)−0.23888 (15)0.0369 (8)
C60.2405 (4)−0.5729 (5)−0.19558 (15)0.0382 (8)
C70.0246 (4)−0.6129 (4)−0.24705 (14)0.0350 (8)
C8−0.1951 (5)−0.4915 (5)−0.33087 (16)0.0503 (10)
H8A−0.2856−0.4290−0.33350.060*
H8B−0.1133−0.4147−0.32550.060*
C9−0.2050 (4)−0.5725 (5)−0.38529 (15)0.0401 (9)
C10−0.2683 (5)−0.0977 (6)−0.12479 (18)0.0533 (11)
H10A−0.2493−0.0352−0.15270.064*
C11−0.3653 (5)−0.0372 (6)−0.09554 (19)0.0600 (12)
H11A−0.41170.0624−0.10420.072*
C12−0.3913 (5)−0.1260 (6)−0.05392 (18)0.0577 (12)
H12A−0.4549−0.0865−0.03350.069*
C13−0.3225 (4)−0.2768 (6)−0.04181 (16)0.0443 (9)
C14−0.3439 (5)−0.3777 (6)0.00100 (18)0.0551 (12)
H14A−0.4031−0.34090.02340.066*
C15−0.2810 (5)−0.5237 (6)0.00960 (17)0.0519 (11)
H15A−0.2986−0.58730.03750.062*
C16−0.1871 (4)−0.5838 (5)−0.02325 (15)0.0400 (9)
C17−0.1199 (5)−0.7361 (6)−0.01553 (16)0.0480 (10)
H17A−0.1378−0.80420.01120.058*
C18−0.0281 (5)−0.7844 (5)−0.04729 (17)0.0497 (10)
H18A0.0185−0.8849−0.04230.060*
C19−0.0053 (5)−0.6804 (5)−0.08740 (16)0.0450 (10)
H19A0.0579−0.7139−0.10880.054*
C20−0.1588 (4)−0.4874 (5)−0.06459 (14)0.0351 (8)
C21−0.2282 (4)−0.3303 (5)−0.07459 (14)0.0372 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.04657 (18)0.03648 (18)0.02956 (16)0.00219 (12)0.01194 (11)0.00272 (11)
S10.0372 (5)0.0561 (6)0.0393 (5)−0.0041 (5)0.0109 (4)−0.0040 (5)
O10.093 (3)0.056 (2)0.0449 (18)0.0063 (18)0.0098 (17)0.0128 (15)
O20.0666 (19)0.0493 (18)0.0396 (16)0.0129 (15)0.0011 (14)−0.0080 (13)
N10.0437 (18)0.0410 (18)0.0279 (15)−0.0012 (14)0.0085 (13)−0.0034 (13)
N20.0396 (17)0.0422 (18)0.0341 (16)−0.0015 (14)0.0112 (13)−0.0054 (14)
N30.0515 (19)0.0405 (19)0.0335 (17)0.0040 (16)0.0088 (14)0.0000 (14)
N40.0410 (17)0.0374 (18)0.0352 (16)0.0000 (14)0.0129 (13)−0.0012 (14)
C10.056 (3)0.054 (3)0.047 (2)−0.007 (2)−0.002 (2)−0.011 (2)
C20.043 (3)0.071 (3)0.068 (3)−0.012 (2)−0.007 (2)−0.006 (3)
C30.037 (2)0.067 (3)0.069 (3)0.001 (2)0.011 (2)0.014 (3)
C40.043 (2)0.058 (3)0.047 (2)0.003 (2)0.0191 (19)0.003 (2)
C50.041 (2)0.038 (2)0.0325 (19)−0.0045 (16)0.0108 (16)0.0054 (16)
C60.043 (2)0.035 (2)0.036 (2)−0.0044 (17)0.0074 (16)0.0038 (16)
C70.040 (2)0.035 (2)0.0314 (18)−0.0031 (16)0.0113 (15)0.0004 (15)
C80.058 (3)0.045 (2)0.042 (2)0.010 (2)−0.0002 (19)−0.0038 (19)
C90.0336 (19)0.045 (2)0.041 (2)−0.0077 (17)0.0084 (16)−0.0029 (18)
C100.069 (3)0.045 (3)0.047 (2)0.009 (2)0.016 (2)0.004 (2)
C110.067 (3)0.053 (3)0.059 (3)0.020 (2)0.012 (2)−0.004 (2)
C120.051 (3)0.075 (3)0.049 (3)0.013 (2)0.016 (2)−0.013 (2)
C130.038 (2)0.057 (3)0.039 (2)0.0047 (19)0.0106 (16)−0.0069 (19)
C140.047 (2)0.079 (4)0.045 (2)0.003 (2)0.0223 (19)−0.001 (2)
C150.046 (2)0.071 (3)0.042 (2)−0.003 (2)0.0172 (19)0.007 (2)
C160.0342 (19)0.051 (2)0.0332 (19)−0.0069 (17)0.0040 (15)0.0030 (17)
C170.052 (2)0.051 (3)0.040 (2)−0.007 (2)0.0079 (18)0.0110 (19)
C180.061 (3)0.038 (2)0.047 (2)0.003 (2)0.007 (2)0.0075 (19)
C190.053 (2)0.041 (2)0.043 (2)0.0037 (19)0.0153 (19)0.0003 (18)
C200.0297 (18)0.043 (2)0.0309 (18)−0.0052 (16)0.0031 (14)−0.0026 (16)
C210.0360 (19)0.044 (2)0.0305 (18)−0.0016 (16)0.0050 (15)−0.0051 (16)

Geometric parameters (Å, °)

Cd1—O2i2.189 (3)C4—C51.391 (5)
Cd1—N2i2.211 (3)C4—H4A0.930
Cd1—N12.236 (3)C5—C61.397 (5)
Cd1—N42.327 (3)C8—C91.530 (5)
Cd1—N32.405 (3)C8—H8A0.970
S1—C71.754 (4)C8—H8B0.970
S1—C81.811 (4)C10—C111.384 (6)
O1—C91.225 (5)C10—H10A0.930
O2—C91.260 (5)C11—C121.360 (7)
O2—Cd1ii2.189 (3)C11—H11A0.930
N1—C71.344 (5)C12—C131.400 (6)
N1—C61.387 (5)C12—H12A0.930
N2—C71.334 (5)C13—C211.411 (5)
N2—C51.382 (5)C13—C141.427 (6)
N2—Cd1ii2.211 (3)C14—C151.333 (6)
N3—C101.327 (5)C14—H14A0.930
N3—C211.347 (5)C15—C161.427 (6)
N4—C191.323 (5)C15—H15A0.930
N4—C201.355 (5)C16—C171.396 (6)
C1—C21.365 (6)C16—C201.396 (5)
C1—C61.387 (5)C17—C181.361 (6)
C1—H1A0.930C17—H17A0.930
C2—C31.394 (7)C18—C191.392 (6)
C2—H2A0.930C18—H18A0.930
C3—C41.363 (6)C19—H19A0.930
C3—H3A0.930C20—C211.443 (5)
O2i—Cd1—N2i104.44 (11)C9—C8—S1120.2 (3)
O2i—Cd1—N1102.73 (12)C9—C8—H8A107.3
N2i—Cd1—N199.99 (11)S1—C8—H8A107.3
O2i—Cd1—N4100.86 (11)C9—C8—H8B107.3
N2i—Cd1—N4147.43 (11)S1—C8—H8B107.3
N1—Cd1—N494.03 (11)H8A—C8—H8B106.9
O2i—Cd1—N393.88 (12)O1—C9—O2124.8 (4)
N2i—Cd1—N387.71 (11)O1—C9—C8114.9 (4)
N1—Cd1—N3159.18 (12)O2—C9—C8120.3 (4)
N4—Cd1—N370.30 (11)N3—C10—C11123.5 (4)
C7—S1—C8102.5 (2)N3—C10—H10A118.2
C9—O2—Cd1ii131.8 (3)C11—C10—H10A118.2
C7—N1—C6103.6 (3)C12—C11—C10118.8 (4)
C7—N1—Cd1123.9 (2)C12—C11—H11A120.6
C6—N1—Cd1130.9 (2)C10—C11—H11A120.6
C7—N2—C5104.4 (3)C11—C12—C13120.1 (4)
C7—N2—Cd1ii119.8 (2)C11—C12—H12A120.0
C5—N2—Cd1ii135.0 (3)C13—C12—H12A120.0
C10—N3—C21118.2 (3)C12—C13—C21117.2 (4)
C10—N3—Cd1126.8 (3)C12—C13—C14123.7 (4)
C21—N3—Cd1114.9 (2)C21—C13—C14119.1 (4)
C19—N4—C20117.9 (3)C15—C14—C13121.6 (4)
C19—N4—Cd1124.2 (3)C15—C14—H14A119.2
C20—N4—Cd1117.8 (2)C13—C14—H14A119.2
C2—C1—C6117.7 (4)C14—C15—C16121.1 (4)
C2—C1—H1A121.2C14—C15—H15A119.5
C6—C1—H1A121.2C16—C15—H15A119.5
C1—C2—C3121.8 (4)C17—C16—C20117.8 (4)
C1—C2—H2A119.1C17—C16—C15122.6 (4)
C3—C2—H2A119.1C20—C16—C15119.5 (4)
C4—C3—C2121.3 (4)C18—C17—C16119.7 (4)
C4—C3—H3A119.4C18—C17—H17A120.1
C2—C3—H3A119.4C16—C17—H17A120.1
C3—C4—C5117.5 (4)C17—C18—C19118.7 (4)
C3—C4—H4A121.2C17—C18—H18A120.7
C5—C4—H4A121.2C19—C18—H18A120.7
N2—C5—C4130.7 (4)N4—C19—C18123.4 (4)
N2—C5—C6108.1 (3)N4—C19—H19A118.3
C4—C5—C6121.2 (4)C18—C19—H19A118.3
N1—C6—C1131.0 (4)N4—C20—C16122.4 (4)
N1—C6—C5108.5 (3)N4—C20—C21118.0 (3)
C1—C6—C5120.5 (4)C16—C20—C21119.7 (3)
N2—C7—N1115.5 (3)N3—C21—C13122.3 (4)
N2—C7—S1122.9 (3)N3—C21—C20118.7 (3)
N1—C7—S1121.5 (3)C13—C21—C20119.0 (4)

Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) −x, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2328).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Matthews, C. J., Heath, S. L., Elsegood, M. R. J., Clegg, W., Leese, T. A. & Lockhart, J. C. (1998). Dalton Trans. pp. 1973–1977.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Zhang, Y.-W., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, m868. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography