PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m32–m33.
Published online 2008 December 10. doi:  10.1107/S160053680804110X
PMCID: PMC2967879

trans-N,N,N′,N′-Tetra­kis(carboxy­meth­yl)cyclo­hexane-1,2-diammonium tetra­chloridocadmium(II) tetra­hydrate

Abstract

In the title compound, (C14H24N2O8)[CdCl4]·4H2O, the Cd atom in the tetra­hedral [CdCl4]2− anion lies on a twofold rotation axis, and the diprotonated organic mol­ecule, trans-N,N,N′,N′-tetra­kis(carb­oxy­meth­yl)cyclo­hexane-1,2-diammon­ium, has 2 symmetry with the twofold rotation axis running through the mid-point of two C—C bonds in the cyclo­hexane unit. In the crystal structure, classical intra­molecular O—H(...)O and N—H(...)O and inter­molecular O—H(...)O, N—H(...)O, O—H(...)Cl and C—H(...)Cl hydrogen bonds are observed.

Related literature

For the structure of 1,2-diamino­cyclo­hexane-N,N′-tetra­acetate ferrate(III), see: Seibig & Van Eldik (1998 [triangle]). For related tetra­acetate-based Cu(II) dimeric and polymeric complexes, see: Wang et al. (1999 [triangle]); Ben Amor & Jouini (1999 [triangle]). For highly stable chiral three-dimensional cadmium 1,2,4-benzene­tricarboxyl­ate structures with NLO and fluorescence properties, see: Wang et al. (2006 [triangle]). For a flexible multicarboxyl­ate ligand used to form homochiral helical Zn and Cd coordination polymers, see: Zang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m32-scheme1.jpg

Experimental

Crystal data

  • (C14H24N2O8)[CdCl4]·4H2O
  • M r = 674.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m32-efi3.jpg
  • a = 11.3772 (14) Å
  • b = 8.5734 (10) Å
  • c = 16.2189 (16) Å
  • β = 124.119 (6)°
  • V = 1309.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.30 mm−1
  • T = 291 (2) K
  • 0.68 × 0.54 × 0.28 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.472, T max = 0.712
  • 12160 measured reflections
  • 2400 independent reflections
  • 2319 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.069
  • S = 1.01
  • 2400 reflections
  • 166 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680804110X/si2140sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804110X/si2140Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Jiangxi Provincial Educational Foundation (No. 20060237), the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the Key Laboratory of Jiangxi University for Functional Materials Chemistry.

supplementary crystallographic information

Comment

In recent years, one-, two- and three-dimensional infinite supramolecular coordination assemblies of Cd(II) have been the subject of great interest owing to their potential applications in many fields, such as catalysis and optical properties (Wang et al., 2006; Zang et al., 2006). Trans-1,2- cyclohexanediamine-N,N,N',N'-tetra-acetic acid (H4CTA) is a multifunctional ligand that not only can coordinate to metal ions to form coordination complexes, also can act as hydrogen bonding donors in forming supramolecular coordination assemblies (Ben Amor & Jouini, 1999; Seibig & Van Eldik, 1998; Wang et al., 1999). In this work, we report a novel Cd(II) complex accidently obtained by CdCl2 and H4CTA, [CdCl4].H6CTA.4H2O (I).

The molecular structure of the compound (I) is revealed in Fig. 1. The asymmetric unit of the complex consists of 1/2 [CdCl4]2- tetrahedral anion unit, one protonated H6CTA cation plus two interstitial water molecules. The Cd(II) atom in the anion is tetrahedrally coordinated by four chlorine atoms, in which the bond length of Cd—Cl lie in the range from 2.4465 (6) Å to 2.4725 (7) Å, and the bond angles Cl—Cd—Cl vary from 101.26 (3) to 114.62 (3)°. The cadmium atom in the tetrahedral anion unit, [CdCl4]2-, lies on a crystallographic rotation axis (site symmetry 2), and the diprotonated organic molecule, [H6CTA]2+, has a twofold rotation symmetry with the crystallographic twofold axis running through the middle of two C—C bonds of the cyclohexane part.

In the crystal structure of the compound (I), classic inter- and intra- molecular O—H···O, N—H···O, O—H···Cl and C—H···Cl hydrogen bonds are observed (Table 1), which link the ammonium cations, [CdCl4]2- anions and uncoordinated water molecules into a 3-D hydrogen-bonded network and stabilize the crystal packing, as shown in Fig. 2.

Experimental

Trans-1,2-cyclohexanediamine-N,N,N',N' -tetra-acetic acid (0.012 mol, 0.4156 g) and CdCl2 (0.0045 mol, 0.8249 g) were dissolved in dilute HCl (10 ml, 1M) and the resultant solution was evaporated slowly at ca 323 K. The title compound was obtained as block colourless crystals after several days.

Refinement

The C-bound H atoms were positioned geometrically, with C—H = 0.98 Å and 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq. Atom H1B was positioned geometrically and allowed to ride on N1, with N—H = 0.91Å and Uiso(H)= 1.2Ueq(N). The H atoms bonded to carboxyl O atoms were located in a difference Fourier map and refined with O–H distance restraints of 0.85 (2) Å. Water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (2) Å, respectively, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Symmetry related atoms are labeled A (symmetry code: -x, y, -z - 3/2) for the CdCl4 unit and (1 - x,y, -z - 1/2) ...
Fig. 2.
View of the 3-D network for compound (I) along the b axis.

Crystal data

(C14H24N2O8)[CdCl4]·4H2OF(000) = 684
Mr = 674.63Dx = 1.711 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ycCell parameters from 4992 reflections
a = 11.3772 (14) Åθ = 3.0–25.4°
b = 8.5734 (10) ŵ = 1.30 mm1
c = 16.2189 (16) ÅT = 291 K
β = 124.119 (6)°Block, colorless
V = 1309.7 (3) Å30.68 × 0.54 × 0.28 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer2400 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.472, Tmax = 0.712k = −9→10
12160 measured reflectionsl = −19→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0429P)2 + 0.6848P] where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max = 0.002
166 parametersΔρmax = 0.33 e Å3
9 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.53761 (3)0.25000.03615 (11)
Cl10.02889 (8)0.72055 (7)0.37802 (5)0.04979 (18)
Cl20.21701 (5)0.38349 (7)0.32009 (4)0.03949 (15)
O10.4348 (2)0.2419 (2)0.94146 (13)0.0498 (5)
H1C0.36710.16500.90990.075*
O1W0.2453 (3)0.0262 (3)0.8865 (2)0.0679 (6)
O20.40158 (16)0.24536 (18)0.79129 (11)0.0359 (4)
O2W−0.0832 (3)0.9342 (3)0.8284 (2)0.0894 (9)
O30.75562 (17)0.18174 (18)0.96741 (12)0.0415 (4)
O40.96749 (15)0.3009 (2)1.05918 (12)0.0402 (4)
H4C0.99160.23071.10100.060*
N10.62609 (17)0.44661 (18)0.85909 (12)0.0222 (3)
H1B0.60070.36090.81940.027*
C10.5801 (2)0.5898 (2)0.79036 (14)0.0247 (4)
H1A0.62970.58540.75680.030*
C20.6258 (3)0.7396 (2)0.85186 (17)0.0363 (5)
H2A0.58480.74200.89050.044*
H2B0.72830.74020.89800.044*
C30.5796 (3)0.8841 (3)0.78646 (19)0.0443 (6)
H3A0.60880.97690.82770.053*
H3B0.62480.88560.75050.053*
C40.5549 (2)0.4321 (2)0.91397 (15)0.0270 (4)
H4A0.62610.41840.98460.032*
H4B0.50220.52670.90520.032*
C50.4558 (2)0.2950 (3)0.87470 (16)0.0301 (4)
C60.7845 (2)0.4427 (2)0.92917 (16)0.0306 (5)
H6A0.81570.52960.97520.037*
H6B0.82700.45390.89170.037*
C70.8335 (2)0.2919 (3)0.98686 (15)0.0306 (5)
H2WA−0.126 (7)0.924 (6)0.7667 (17)0.18 (3)*
H2WB−0.090 (5)1.020 (3)0.848 (3)0.106 (18)*
H1WA0.271 (5)−0.061 (4)0.915 (4)0.15 (2)*
H1WB0.189 (5)0.069 (4)0.899 (6)0.29 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03114 (15)0.04045 (17)0.03324 (15)0.0000.01584 (12)0.000
Cl10.0697 (4)0.0412 (3)0.0407 (3)0.0038 (3)0.0323 (3)−0.0005 (3)
Cl20.0280 (3)0.0544 (4)0.0334 (3)0.0020 (2)0.0156 (2)−0.0005 (2)
O10.0634 (11)0.0554 (11)0.0410 (10)−0.0215 (9)0.0357 (9)−0.0021 (8)
O1W0.0683 (14)0.0591 (14)0.0808 (16)−0.0126 (11)0.0445 (14)0.0116 (12)
O20.0398 (8)0.0370 (8)0.0317 (8)−0.0104 (7)0.0205 (7)−0.0036 (7)
O2W0.0851 (18)0.0461 (13)0.0653 (16)0.0025 (13)−0.0017 (14)0.0128 (12)
O30.0376 (9)0.0303 (8)0.0397 (9)−0.0023 (7)0.0113 (7)0.0016 (7)
O40.0262 (8)0.0442 (9)0.0355 (9)0.0021 (7)0.0083 (7)0.0114 (7)
N10.0222 (8)0.0239 (8)0.0187 (8)−0.0013 (6)0.0103 (7)−0.0016 (6)
C10.0271 (10)0.0240 (9)0.0206 (9)−0.0011 (8)0.0120 (9)0.0022 (8)
C20.0394 (12)0.0262 (11)0.0295 (11)−0.0050 (9)0.0109 (10)−0.0033 (9)
C30.0488 (14)0.0257 (11)0.0440 (13)−0.0060 (10)0.0174 (12)−0.0003 (10)
C40.0297 (10)0.0328 (10)0.0213 (10)0.0010 (9)0.0161 (9)0.0015 (8)
C50.0303 (11)0.0328 (11)0.0300 (11)0.0018 (9)0.0185 (9)0.0054 (9)
C60.0207 (10)0.0348 (11)0.0297 (11)−0.0005 (8)0.0101 (9)0.0033 (9)
C70.0288 (11)0.0341 (11)0.0241 (10)0.0006 (9)0.0119 (9)−0.0013 (9)

Geometric parameters (Å, °)

Cd1—Cl2i2.4465 (6)N1—H1B0.9105
Cd1—Cl22.4465 (6)C1—C21.527 (3)
Cd1—Cl12.4725 (7)C1—C1ii1.536 (4)
Cd1—Cl1i2.4725 (7)C1—H1A0.9800
O1—C51.314 (3)C2—C31.520 (3)
O1—H1C0.9209C2—H2A0.9700
O1W—H1WA0.84 (4)C2—H2B0.9700
O1W—H1WB0.86 (7)C3—C3ii1.508 (5)
O2—C51.207 (3)C3—H3A0.9700
O2W—H2WA0.84 (3)C3—H3B0.9700
O2W—H2WB0.82 (3)C4—C51.501 (3)
O3—C71.209 (3)C4—H4A0.9700
O4—C71.304 (3)C4—H4B0.9700
O4—H4C0.8305C6—C71.508 (3)
N1—C61.497 (3)C6—H6A0.9700
N1—C41.508 (2)C6—H6B0.9700
N1—C11.539 (2)
Cl2i—Cd1—Cl2114.62 (3)C1—C2—H2B109.2
Cl2i—Cd1—Cl1110.91 (2)H2A—C2—H2B107.9
Cl2—Cd1—Cl1109.16 (2)C3ii—C3—C2109.91 (19)
Cl2i—Cd1—Cl1i109.16 (2)C3ii—C3—H3A109.7
Cl2—Cd1—Cl1i110.91 (2)C2—C3—H3A109.7
Cl1—Cd1—Cl1i101.26 (3)C3ii—C3—H3B109.7
C5—O1—H1C105.8C2—C3—H3B109.7
H1WA—O1W—H1WB110 (3)H3A—C3—H3B108.2
H2WA—O2W—H2WB116 (3)C5—C4—N1109.79 (16)
C7—O4—H4C112.1C5—C4—H4A109.7
C6—N1—C4111.50 (15)N1—C4—H4A109.7
C6—N1—C1110.05 (15)C5—C4—H4B109.7
C4—N1—C1114.62 (15)N1—C4—H4B109.7
C6—N1—H1B106.8H4A—C4—H4B108.2
C4—N1—H1B106.7O2—C5—O1125.9 (2)
C1—N1—H1B106.7O2—C5—C4122.82 (18)
C2—C1—C1ii111.29 (14)O1—C5—C4111.22 (18)
C2—C1—N1110.17 (15)N1—C6—C7111.04 (17)
C1ii—C1—N1112.08 (13)N1—C6—H6A109.4
C2—C1—H1A107.7C7—C6—H6A109.4
C1ii—C1—H1A107.7N1—C6—H6B109.4
N1—C1—H1A107.7C7—C6—H6B109.4
C3—C2—C1111.84 (18)H6A—C6—H6B108.0
C3—C2—H2A109.2O3—C7—O4126.6 (2)
C1—C2—H2A109.2O3—C7—C6123.08 (19)
C3—C2—H2B109.2O4—C7—C6110.27 (18)
C6—N1—C1—C2−61.6 (2)C1—N1—C4—C5111.04 (18)
C4—N1—C1—C265.0 (2)N1—C4—C5—O2−26.1 (3)
C6—N1—C1—C1ii173.88 (18)N1—C4—C5—O1155.57 (17)
C4—N1—C1—C1ii−59.5 (2)C4—N1—C6—C760.0 (2)
C1ii—C1—C2—C3−53.8 (3)C1—N1—C6—C7−171.67 (16)
N1—C1—C2—C3−178.77 (19)N1—C6—C7—O310.0 (3)
C1—C2—C3—C3ii58.3 (3)N1—C6—C7—O4−168.89 (18)
C6—N1—C4—C5−123.10 (18)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.84 (4)2.34 (4)2.970 (3)132 (5)
N1—H1B···O20.912.272.750 (3)112
N1—H1B···O2ii0.912.042.857 (2)149
O1—H1C···O1W0.921.702.590 (4)162
O2W—H2WA···O1Wiv0.84 (3)2.24 (3)2.993 (4)151 (5)
O2W—H2WB···Cl1v0.82 (3)2.51 (4)3.144 (3)136 (4)
O1W—H1WB···Cl1vi0.86 (7)2.45 (3)3.227 (3)152 (6)
O4—H4C···O2Wvii0.831.752.535 (3)157
C1—H1A···Cl2viii0.982.673.637 (3)171
C4—H4A···Cl2ii0.972.643.600 (2)170
C4—H4B···Cl2vi0.972.833.610 (3)138
C6—H6A···Cl1ii0.972.603.537 (2)163

Symmetry codes: (iii) −x+1, −y, −z+2; (ii) −x+1, y, −z+3/2; (iv) −x, y+1, −z+3/2; (v) x, −y+2, z+1/2; (vi) x, −y+1, z+1/2; (vii) −x+1, −y+1, −z+2; (viii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2140).

References

  • Ben Amor, F. & Jouini, T. (1999). Acta Cryst. C55, 499–501.
  • Seibig, S. & Van Eldik, R. (1998). Inorg. Chim. Acta, 279, 37–43.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, Q. M., Wu, X. T., Lin, P., Zhang, W. J., Sheng, T. L., Yu, H., Chen, L. & Li, J. M. (1999). Polyhedron, 18, 1411–1417.
  • Wang, L., Yang, M., Li, G. H., Shi, Z. & Feng, S. H. (2006). Inorg. Chem.45, 2474–2478. [PubMed]
  • Zang, S. Q., Su, Y., Li, Y. Z., Ni, Z. P. & Meng, Q. J. (2006). Inorg. Chem.45, 174–180. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography