PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m29.
Published online 2008 December 10. doi:  10.1107/S1600536808040774
PMCID: PMC2967876

catena-Poly[[trimethyl­tin(IV)]-μ-2,5-difluoro­benzoato-κ2 O:O′]

Abstract

In the title polymeric coordination compound, [Sn(CH3)3(C7H3F2O2)]n, the Sn atom exhibits a distorted trigonal-bipyramidal coordination geometry with the carboxyl­ate O atoms in the axial positions and the equatorial positions occupied by the methyl groups. The two Sn—O bond lengths are 2.225 (5) and 2.410 (6) Å.

Related literature

For a related structure, see: Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m29-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)3(C7H3F2O2)]
  • M r = 320.91
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-65-00m29-efi6.jpg
  • a = 9.8857 (9) Å
  • c = 24.896 (2) Å
  • V = 2433.0 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.11 mm−1
  • T = 298 (2) K
  • 0.38 × 0.29 × 0.27 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.502, T max = 0.600 (expected range = 0.474–0.566)
  • 10078 measured reflections
  • 2152 independent reflections
  • 1996 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.107
  • S = 1.00
  • 2152 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.46 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 830 Friedel pairs
  • Flack parameter: −0.01 (8)

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040774/gk2177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040774/gk2177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the National Natural Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (2005ZX09) for financial support.

supplementary crystallographic information

Comment

In recent years the organotin derivatives have attracted considerable attention due to a significant antimicrobial properties as well as antitumor activities. Studies on organotin complexes containing carboxylate ligands with an additional donor atom (e.g N, S or F) that is available for coordinating to Sn atom have revealed that new structural types may lead to different activities. We have therefore synthesized the title compound, and present its crystal structure here. The molecular structure of the compound is shown in Fig.1 The Sn atom, assumes a distorted trigonal bipyramidal coordination geometry, provided by three methyl groups at the equatorial positions and two carboxylate groups at the axial positions. The Sn—O bond lengths in the compound (Table 1), are similar to those found in related organotin carboxylates (Wang et al., 2007). In the crystal packing, molecules are linked by intermolecular C—H···F hydrogen bonds (Fig.2, Table 1,)

Experimental

The reaction was carried out under nitrogen atmosphere. 2,5-Difluorobenzoic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane/methanol (1:1) to yield colourless block crystals (yield 83%. m.p.393K). Anal. Calcd (%) for C10H12F2O2Sn(Mr = 320.91): C, 37.43; H, 3.77; F, 11.84; Sn, 36.99. Found (%): C, 37.39; H, 3.86; F, 11.78; Sn, 36.89.

Refinement

The H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å and aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C, O) or 1.5 Ueq(C) for the methyl group.

Figures

Fig. 1.
The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry codes: (A) = x - 1/2,-y + 3/2,-z + 1/4, (B) = x + 1/2,-y + 3/2,-z + 1/4

Crystal data

[Sn(CH3)3(C7H3F2O2)]Dx = 1.752 Mg m3
Mr = 320.91Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 5675 reflections
Hall symbol: P 4nw 2abwθ = 2.2–26.4°
a = 9.8857 (9) ŵ = 2.11 mm1
c = 24.896 (2) ÅT = 298 K
V = 2433.0 (4) Å3Block, colourless
Z = 80.38 × 0.29 × 0.27 mm
F(000) = 1248

Data collection

Siemens SMART CCD diffractometer2152 independent reflections
Radiation source: fine-focus sealed tube1996 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.502, Tmax = 0.600k = −11→7
10078 measured reflectionsl = −16→29

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.107w = 1/[σ2(Fo2) + (0.066P)2 + 4.861P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2152 reflectionsΔρmax = 0.54 e Å3
136 parametersΔρmin = −0.45 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.79786 (5)0.82634 (5)0.11522 (2)0.05163 (18)
F11.1717 (7)1.1333 (7)0.1597 (3)0.111 (2)
F21.4123 (8)1.0943 (8)−0.0335 (3)0.131 (3)
O10.9583 (5)0.9696 (5)0.0890 (2)0.0632 (14)
O21.1085 (6)0.8095 (6)0.1065 (3)0.0786 (18)
C11.0763 (7)0.9249 (7)0.0922 (3)0.0552 (19)
C21.1900 (8)1.0242 (7)0.0773 (3)0.0561 (18)
C31.2313 (10)1.1239 (11)0.1101 (4)0.080 (3)
C41.3367 (11)1.2144 (9)0.0992 (5)0.089 (3)
H41.36491.27870.12400.107*
C51.3953 (9)1.2021 (11)0.0498 (5)0.082 (3)
H51.46351.26150.03950.098*
C61.3539 (10)1.1028 (11)0.0153 (4)0.081 (3)
C71.2516 (10)1.0141 (11)0.0269 (4)0.078 (3)
H71.22400.94950.00200.093*
C80.6502 (9)0.9694 (8)0.0912 (3)0.067 (2)
H8A0.68491.02270.06210.100*
H8B0.62871.02740.12100.100*
H8C0.57000.92290.07970.100*
C90.8458 (10)0.6721 (11)0.0603 (4)0.081 (3)
H9A0.76450.62610.04970.122*
H9B0.90650.60880.07690.122*
H9C0.88820.71080.02920.122*
C100.8626 (9)0.8328 (10)0.1959 (3)0.070 (2)
H10A0.91120.75140.20430.105*
H10B0.78540.84050.21910.105*
H10C0.92070.90950.20110.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0368 (3)0.0477 (3)0.0704 (3)0.0054 (2)−0.0009 (2)0.0029 (2)
F10.121 (6)0.108 (5)0.103 (4)−0.027 (4)0.039 (4)−0.022 (4)
F20.138 (6)0.136 (6)0.120 (5)0.010 (5)0.067 (5)0.039 (4)
O10.040 (3)0.047 (3)0.102 (4)0.009 (2)0.009 (3)0.020 (3)
O20.054 (3)0.054 (3)0.128 (5)0.005 (3)−0.001 (3)0.029 (4)
C10.031 (3)0.047 (4)0.087 (5)−0.004 (3)0.012 (3)0.014 (4)
C20.033 (3)0.046 (4)0.089 (5)0.005 (3)0.003 (4)0.015 (4)
C30.063 (6)0.083 (7)0.094 (7)0.012 (5)0.020 (5)0.004 (6)
C40.100 (8)0.048 (5)0.119 (8)−0.007 (5)0.014 (6)0.007 (5)
C50.046 (5)0.067 (6)0.133 (9)0.001 (5)0.013 (5)0.035 (6)
C60.058 (5)0.087 (7)0.099 (7)0.012 (5)0.025 (5)0.039 (6)
C70.067 (6)0.089 (7)0.077 (6)0.006 (5)0.011 (5)0.026 (5)
C80.062 (5)0.050 (5)0.088 (5)0.013 (4)−0.004 (4)0.007 (4)
C90.074 (6)0.092 (7)0.078 (6)0.025 (6)−0.012 (5)−0.009 (5)
C100.068 (5)0.074 (6)0.068 (5)0.008 (4)−0.003 (4)−0.004 (4)

Geometric parameters (Å, °)

Sn1—C92.103 (9)C4—H40.9300
Sn1—C102.110 (8)C5—C61.366 (15)
Sn1—C82.118 (7)C5—H50.9300
Sn1—O12.225 (5)C6—C71.369 (14)
Sn1—O2i2.410 (6)C7—H70.9300
F1—C31.373 (11)C8—H8A0.9600
F2—C61.349 (11)C8—H8B0.9600
O1—C11.250 (9)C8—H8C0.9600
O2—C11.237 (9)C9—H9A0.9600
O2—Sn1ii2.410 (6)C9—H9B0.9600
C1—C21.537 (10)C9—H9C0.9600
C2—C31.344 (13)C10—H10A0.9600
C2—C71.399 (12)C10—H10B0.9600
C3—C41.399 (14)C10—H10C0.9600
C4—C51.365 (14)
C9—Sn1—C10125.0 (4)C6—C5—H5119.9
C9—Sn1—C8117.1 (4)F2—C6—C5118.8 (10)
C10—Sn1—C8117.2 (3)F2—C6—C7117.7 (11)
C9—Sn1—O196.3 (3)C5—C6—C7123.4 (10)
C10—Sn1—O192.5 (3)C6—C7—C2117.7 (11)
C8—Sn1—O189.1 (3)C6—C7—H7121.2
C9—Sn1—O2i87.8 (3)C2—C7—H7121.2
C10—Sn1—O2i88.5 (3)Sn1—C8—H8A109.5
C8—Sn1—O2i85.4 (3)Sn1—C8—H8B109.5
O1—Sn1—O2i174.15 (19)H8A—C8—H8B109.5
C1—O1—Sn1114.9 (4)Sn1—C8—H8C109.5
C1—O2—Sn1ii142.9 (5)H8A—C8—H8C109.5
O2—C1—O1125.8 (6)H8B—C8—H8C109.5
O2—C1—C2118.1 (6)Sn1—C9—H9A109.5
O1—C1—C2116.2 (6)Sn1—C9—H9B109.5
C3—C2—C7117.7 (8)H9A—C9—H9B109.5
C3—C2—C1123.0 (8)Sn1—C9—H9C109.5
C7—C2—C1119.3 (8)H9A—C9—H9C109.5
C2—C3—F1117.8 (9)H9B—C9—H9C109.5
C2—C3—C4125.3 (9)Sn1—C10—H10A109.5
F1—C3—C4116.8 (10)Sn1—C10—H10B109.5
C5—C4—C3115.7 (10)H10A—C10—H10B109.5
C5—C4—H4122.1Sn1—C10—H10C109.5
C3—C4—H4122.1H10A—C10—H10C109.5
C4—C5—C6120.1 (9)H10B—C10—H10C109.5
C4—C5—H5119.9
C9—Sn1—O1—C1−58.5 (6)C1—C2—C3—F12.4 (13)
C10—Sn1—O1—C167.1 (6)C7—C2—C3—C4−3.8 (15)
C8—Sn1—O1—C1−175.6 (7)C1—C2—C3—C4178.1 (9)
Sn1ii—O2—C1—O1−166.0 (7)C2—C3—C4—C53.6 (16)
Sn1ii—O2—C1—C213.5 (15)F1—C3—C4—C5179.3 (8)
Sn1—O1—C1—O22.8 (12)C3—C4—C5—C6−2.5 (15)
Sn1—O1—C1—C2−176.8 (5)C4—C5—C6—F2179.0 (9)
O2—C1—C2—C3−103.1 (10)C4—C5—C6—C72.0 (16)
O1—C1—C2—C376.4 (11)F2—C6—C7—C2−179.2 (8)
O2—C1—C2—C778.8 (11)C5—C6—C7—C2−2.1 (15)
O1—C1—C2—C7−101.7 (9)C3—C2—C7—C62.9 (13)
C7—C2—C3—F1−179.5 (8)C1—C2—C7—C6−178.9 (8)

Symmetry codes: (i) x−1/2, −y+3/2, −z+1/4; (ii) x+1/2, −y+3/2, −z+1/4.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···F1iii0.932.633.336 (13)133

Symmetry codes: (iii) x+1/2, −y+5/2, −z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2177).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, H., Yin, H. & Wang, D. (2007). Acta Cryst. E63, m2958.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography