PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m28.
Published online 2008 December 10. doi:  10.1107/S160053680804083X
PMCID: PMC2967875

Bis[3,5-difluoro-2-(2-pyrid­yl)phen­yl](picolinato)iridium(III)

Abstract

The Ir centre in the title complex, [Ir(C11H6F2N)2(C6H4NO2)], is six-coordinated in a slightly distorted octa­hedral IrC2N3O fashion.

Related literature

For background to organic light-emitting diodes (OLEDs), see: Cai et al. (2008 [triangle]); Chen et al. (2007 [triangle]); Park et al. (2006 [triangle]). For the synthesis, see: Lamansky et al. (2001 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-00m28-scheme1.jpg

Experimental

Crystal data

  • [Ir(C11H6F2N)2(C6H4NO2)]
  • M r = 694.64
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m28-efi1.jpg
  • a = 16.469 (3) Å
  • b = 14.677 (3) Å
  • c = 19.612 (4) Å
  • V = 4740.3 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.70 mm−1
  • T = 292 (2) K
  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.203, T max = 0.284
  • 43036 measured reflections
  • 5410 independent reflections
  • 4239 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.066
  • S = 1.06
  • 5410 reflections
  • 343 parameters
  • H-atom parameters constrained
  • Δρmax = 2.31 e Å−3
  • Δρmin = −1.47 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804083X/bt2823sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804083X/bt2823Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Key Programs Foundation for Science and Technology Development of Shanxi Province and the Foundation of Jilin Normal University.

supplementary crystallographic information

Comment

In recent decades, the long-lived excited-state and highly efficient solid-state emissions of d6 and d8 metal complexes have made them of interest as potential components in organic light-emitting diodes (OLEDs) (Chen et al., 2007). Particularly, phosphorescent materials like Ir3+ complexes can significantly improve electroluminescent performance because both singlet and triplet excitons can be harvested for light emission, and usually are used as very promising phosphor dyes in OLEDs (Park et al., 2006). Recently, blue organic phosphor such as F2Irpic (F = 4,6-difluorophenylpyridinato-N,C-2' and pic = picolinate) (I) as a successful cyclometalated Ir3+ complex which has been typically doped into host matrices such as tetra-aryl silanes and short conjugation length carbazole derivatives in OLEDs, showing a good quantum efficiency (Cai et al., 2008). In this contribution, we synthesized and investigated crystal structure of F2Irpic.

As shown in Fig. 1, each Ir3+ cation is in a distorted octahedral coordination geometry, consisting of two chelating cyclometalated F ligands with cis-C—C and trans-N—N dispositions and one pic ligand. The Ir—O distance being 2.152 Å and Ir—C and Ir—N lengths are in the range of 1.993–1.997 Å and 2.041–2.138 Å, respectively.

Experimental

The title complex was obtained in two steps using a standard method (Lamansky et al., 2001) (71% yield based on Ir).

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound. Displacement ellipsoids are drawn at the 30% probability level (H atoms have been omitted).
Fig. 2.
Partial packing diagram of the title compound.

Crystal data

[Ir(C11H6F2N)2(C6H4NO2)]F(000) = 2672
Mr = 694.64Dx = 1.947 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2859 reflections
a = 16.469 (3) Åθ = 3.0–27.5°
b = 14.677 (3) ŵ = 5.70 mm1
c = 19.612 (4) ÅT = 292 K
V = 4740.3 (16) Å3Block, yellow
Z = 80.30 × 0.26 × 0.22 mm

Data collection

Rigaku R-AXIS RAPID diffractometer5410 independent reflections
Radiation source: fine-focus sealed tube4239 reflections with I > 2σ(I)
graphiteRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scanh = −20→21
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −19→19
Tmin = 0.203, Tmax = 0.284l = −25→25
43036 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.014P)2 + 17.09P] where P = (Fo2 + 2Fc2)/3
5410 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 2.31 e Å3
0 restraintsΔρmin = −1.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6207 (4)0.1101 (4)0.6853 (3)0.0499 (13)
H10.56610.12210.67750.060*
C20.6411 (4)0.0328 (4)0.7211 (3)0.0669 (17)
H20.6013−0.00750.73590.080*
C30.7215 (5)0.0169 (4)0.7343 (3)0.0707 (19)
H30.7368−0.03430.75910.085*
C40.7802 (4)0.0765 (4)0.7107 (3)0.0622 (16)
H40.83480.06600.72000.075*
C50.7565 (3)0.1537 (4)0.6724 (2)0.0480 (13)
C60.8089 (3)0.2221 (4)0.6425 (3)0.0473 (13)
C70.8932 (4)0.2253 (5)0.6464 (3)0.0657 (18)
C80.9387 (3)0.2931 (5)0.6192 (3)0.0658 (18)
H80.99490.29380.62410.079*
C90.8993 (4)0.3605 (5)0.5842 (3)0.071 (2)
C100.8160 (3)0.3619 (4)0.5770 (3)0.0542 (15)
H100.79110.40920.55340.065*
C110.7702 (3)0.2939 (3)0.6046 (2)0.0419 (11)
C120.6176 (3)0.4753 (4)0.5608 (3)0.0509 (13)
H120.61670.48680.60740.061*
C130.6061 (4)0.5465 (4)0.5168 (3)0.0661 (17)
H130.59780.60530.53300.079*
C140.6071 (4)0.5284 (4)0.4480 (3)0.0688 (18)
H140.59940.57550.41690.083*
C150.6194 (4)0.4416 (4)0.4248 (3)0.0558 (15)
H150.61960.42970.37820.067*
C160.6316 (3)0.3711 (3)0.4712 (2)0.0385 (11)
C170.6479 (3)0.2753 (3)0.4558 (2)0.0383 (10)
C180.6517 (3)0.2361 (4)0.3914 (3)0.0472 (12)
C190.6645 (3)0.1461 (4)0.3795 (3)0.0518 (14)
H190.66690.12220.33560.062*
C200.6738 (3)0.0926 (4)0.4362 (3)0.0541 (14)
C210.6723 (3)0.1253 (4)0.5017 (3)0.0515 (14)
H210.68040.08590.53820.062*
C220.6587 (3)0.2175 (3)0.5135 (2)0.0357 (9)
C230.4938 (3)0.3110 (3)0.6744 (2)0.0386 (11)
C240.4141 (3)0.3031 (4)0.6958 (3)0.0525 (14)
H240.39640.33330.73480.063*
C250.3613 (4)0.2499 (4)0.6585 (3)0.0628 (17)
H250.30790.24220.67280.075*
C260.3882 (4)0.2091 (5)0.6007 (4)0.0697 (18)
H260.35280.17440.57440.084*
C270.4686 (3)0.2192 (4)0.5809 (3)0.0556 (14)
H270.48640.19130.54100.067*
C280.5564 (3)0.3678 (3)0.7132 (2)0.0430 (12)
N10.6763 (3)0.1695 (3)0.6610 (2)0.0417 (10)
N20.6303 (2)0.3893 (3)0.53947 (19)0.0365 (9)
N30.5214 (2)0.2683 (3)0.6182 (2)0.0391 (9)
F10.9340 (2)0.1567 (3)0.6813 (2)0.0938 (13)
F20.9423 (2)0.4287 (3)0.5565 (2)0.1009 (15)
F30.6422 (2)0.2901 (3)0.33525 (15)0.0727 (10)
F40.6870 (3)0.0019 (2)0.4263 (2)0.0847 (12)
Ir0.649485 (11)0.281026 (12)0.603051 (9)0.03453 (6)
O10.6297 (2)0.3595 (2)0.69428 (16)0.0409 (8)
O20.5319 (2)0.4165 (3)0.7596 (2)0.0652 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.059 (3)0.041 (3)0.050 (3)−0.002 (2)0.001 (3)0.007 (3)
C20.091 (5)0.046 (3)0.064 (4)0.003 (3)0.003 (4)0.016 (3)
C30.094 (5)0.056 (4)0.061 (4)0.026 (4)−0.010 (4)0.010 (3)
C40.067 (4)0.060 (4)0.059 (4)0.021 (3)−0.011 (3)0.004 (3)
C50.056 (3)0.051 (3)0.036 (3)0.011 (3)−0.005 (2)−0.012 (2)
C60.033 (2)0.060 (3)0.049 (3)0.008 (2)−0.003 (2)−0.024 (3)
C70.050 (3)0.089 (5)0.057 (4)0.010 (4)−0.004 (3)−0.019 (4)
C80.032 (3)0.098 (5)0.068 (4)−0.003 (3)0.000 (3)−0.023 (4)
C90.050 (4)0.093 (5)0.070 (4)−0.031 (4)0.022 (3)−0.023 (4)
C100.042 (3)0.069 (4)0.052 (3)−0.005 (3)0.002 (3)−0.017 (3)
C110.044 (3)0.045 (3)0.037 (2)−0.001 (2)0.001 (2)−0.012 (2)
C120.067 (4)0.034 (3)0.052 (3)0.001 (3)−0.009 (3)0.003 (2)
C130.090 (5)0.038 (3)0.070 (4)0.001 (3)−0.009 (4)0.001 (3)
C140.091 (5)0.047 (4)0.068 (4)0.004 (3)−0.011 (4)0.017 (3)
C150.070 (4)0.055 (4)0.043 (3)0.002 (3)0.001 (3)0.012 (3)
C160.035 (3)0.043 (3)0.038 (2)−0.001 (2)0.000 (2)0.004 (2)
C170.032 (2)0.045 (3)0.038 (2)−0.001 (2)0.001 (2)−0.003 (2)
C180.037 (2)0.064 (4)0.040 (3)0.001 (3)0.003 (2)0.001 (3)
C190.042 (3)0.073 (4)0.041 (3)0.007 (3)−0.003 (2)−0.024 (3)
C200.057 (3)0.047 (3)0.058 (4)0.009 (3)−0.006 (3)−0.019 (3)
C210.063 (4)0.038 (3)0.054 (3)0.009 (2)−0.004 (3)−0.003 (2)
C220.035 (2)0.036 (2)0.036 (2)−0.001 (2)−0.001 (2)−0.005 (2)
C230.045 (3)0.035 (3)0.036 (3)0.002 (2)−0.001 (2)0.010 (2)
C240.046 (3)0.062 (4)0.050 (3)0.005 (3)−0.003 (3)0.011 (3)
C250.047 (3)0.074 (4)0.068 (4)−0.011 (3)−0.001 (3)0.018 (3)
C260.053 (3)0.077 (5)0.079 (5)−0.021 (3)−0.012 (3)−0.002 (4)
C270.060 (3)0.054 (3)0.052 (3)−0.008 (3)−0.010 (3)−0.005 (3)
C280.054 (3)0.038 (3)0.037 (3)0.002 (2)−0.007 (2)0.003 (2)
N10.046 (2)0.040 (2)0.039 (2)0.0068 (19)−0.0049 (19)−0.0004 (19)
N20.040 (2)0.032 (2)0.038 (2)−0.0019 (16)−0.0039 (17)0.0008 (17)
N30.038 (2)0.039 (2)0.040 (2)−0.0031 (17)−0.0062 (17)0.0059 (18)
F10.054 (2)0.119 (4)0.108 (3)0.028 (2)−0.021 (2)−0.010 (3)
F20.072 (3)0.116 (4)0.116 (3)−0.041 (3)0.026 (3)−0.009 (3)
F30.094 (3)0.089 (3)0.0345 (16)0.010 (2)−0.0010 (17)0.0034 (17)
F40.118 (3)0.051 (2)0.086 (3)0.023 (2)−0.012 (2)−0.028 (2)
Ir0.04007 (10)0.03117 (9)0.03235 (9)0.00048 (8)−0.00413 (8)−0.00017 (8)
O10.044 (2)0.0416 (19)0.0376 (17)−0.0021 (15)−0.0060 (15)−0.0040 (15)
O20.061 (3)0.078 (3)0.057 (2)0.009 (2)0.002 (2)−0.023 (2)

Geometric parameters (Å, °)

C1—N11.351 (6)C16—N21.366 (6)
C1—C21.375 (7)C16—C171.463 (7)
C1—H10.9300C17—C181.388 (7)
C2—C31.370 (9)C17—C221.426 (7)
C2—H20.9300C18—C191.359 (8)
C3—C41.383 (9)C18—F31.366 (6)
C3—H30.9300C19—C201.370 (8)
C4—C51.415 (8)C19—H190.9300
C4—H40.9300C20—F41.363 (6)
C5—N11.359 (7)C20—C211.371 (7)
C5—C61.448 (8)C21—C221.391 (7)
C6—C71.391 (7)C21—H210.9300
C6—C111.439 (7)C22—Ir1.993 (4)
C7—C81.355 (9)C23—N31.346 (6)
C7—F11.391 (8)C23—C241.383 (7)
C8—C91.368 (10)C23—C281.528 (7)
C8—H80.9300C24—C251.379 (8)
C9—F21.341 (7)C24—H240.9300
C9—C101.380 (8)C25—C261.356 (9)
C10—C111.362 (7)C25—H250.9300
C10—H100.9300C26—C271.388 (8)
C11—Ir1.997 (5)C26—H260.9300
C12—N21.345 (6)C27—N31.347 (6)
C12—C131.368 (8)C27—H270.9300
C12—H120.9300C28—O21.226 (6)
C13—C141.377 (9)C28—O11.269 (6)
C13—H130.9300N1—Ir2.041 (4)
C14—C151.367 (8)N2—Ir2.045 (4)
C14—H140.9300N3—Ir2.138 (4)
C15—C161.392 (7)Ir—O12.152 (3)
C15—H150.9300
N1—C1—C2123.2 (6)C18—C19—H19122.1
N1—C1—H1118.4C20—C19—H19122.1
C2—C1—H1118.4F4—C20—C19117.5 (5)
C3—C2—C1118.2 (6)F4—C20—C21118.6 (5)
C3—C2—H2120.9C19—C20—C21123.9 (5)
C1—C2—H2120.9C20—C21—C22120.0 (5)
C2—C3—C4120.3 (6)C20—C21—H21120.0
C2—C3—H3119.9C22—C21—H21120.0
C4—C3—H3119.9C21—C22—C17117.8 (4)
C3—C4—C5119.4 (6)C21—C22—Ir127.9 (4)
C3—C4—H4120.3C17—C22—Ir114.3 (3)
C5—C4—H4120.3N3—C23—C24122.0 (5)
N1—C5—C4119.5 (6)N3—C23—C28115.7 (4)
N1—C5—C6113.3 (5)C24—C23—C28122.3 (5)
C4—C5—C6127.3 (5)C25—C24—C23119.0 (6)
C7—C6—C11116.5 (6)C25—C24—H24120.5
C7—C6—C5126.6 (6)C23—C24—H24120.5
C11—C6—C5116.9 (4)C26—C25—C24119.2 (6)
C8—C7—F1117.3 (6)C26—C25—H25120.4
C8—C7—C6123.7 (7)C24—C25—H25120.4
F1—C7—C6119.0 (7)C25—C26—C27119.9 (6)
C7—C8—C9117.8 (6)C25—C26—H26120.1
C7—C8—H8121.1C27—C26—H26120.1
C9—C8—H8121.1N3—C27—C26121.4 (6)
F2—C9—C8119.5 (6)N3—C27—H27119.3
F2—C9—C10118.2 (7)C26—C27—H27119.3
C8—C9—C10122.3 (6)O2—C28—O1125.8 (5)
C11—C10—C9120.0 (6)O2—C28—C23117.8 (5)
C11—C10—H10120.0O1—C28—C23116.4 (4)
C9—C10—H10120.0C1—N1—C5119.3 (5)
C10—C11—C6119.7 (5)C1—N1—Ir124.6 (4)
C10—C11—Ir127.9 (4)C5—N1—Ir116.0 (4)
C6—C11—Ir112.3 (4)C12—N2—C16119.4 (4)
N2—C12—C13122.9 (5)C12—N2—Ir124.3 (3)
N2—C12—H12118.6C16—N2—Ir116.3 (3)
C13—C12—H12118.6C23—N3—C27118.5 (4)
C12—C13—C14118.0 (6)C23—N3—Ir114.0 (3)
C12—C13—H13121.0C27—N3—Ir127.4 (4)
C14—C13—H13121.0C22—Ir—C1188.95 (18)
C15—C14—C13120.5 (6)C22—Ir—N195.68 (18)
C15—C14—H14119.8C11—Ir—N181.53 (19)
C13—C14—H14119.8C22—Ir—N280.69 (18)
C14—C15—C16119.8 (6)C11—Ir—N295.13 (18)
C14—C15—H15120.1N1—Ir—N2175.14 (16)
C16—C15—H15120.1C22—Ir—N399.04 (17)
N2—C16—C15119.5 (5)C11—Ir—N3171.13 (17)
N2—C16—C17113.1 (4)N1—Ir—N393.78 (16)
C15—C16—C17127.3 (5)N2—Ir—N389.99 (15)
C18—C17—C22118.1 (4)C22—Ir—O1173.55 (16)
C18—C17—C16126.4 (5)C11—Ir—O195.02 (16)
C22—C17—C16115.5 (4)N1—Ir—O189.94 (14)
C19—C18—F3116.3 (5)N2—Ir—O193.88 (14)
C19—C18—C17124.5 (5)N3—Ir—O177.38 (14)
F3—C18—C17119.2 (5)C28—O1—Ir116.0 (3)
C18—C19—C20115.8 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2823).

References

  • Cai, X. Y., Padmaperuma, A. B., Sapochak, L. S., Vecchi, P. A. & Burrows, P. E. (2008). Appl. Phys. Lett.92, 083308–3.
  • Chen, L. Q., Yang, C. L., Li, M., Qin, J. G., Gao, J., You, H. & Ma, D. G. (2007). Cryst. Growth Des.7, 39–46.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc.123, 4304–4312. [PubMed]
  • Park, N. G., Choi, G. C., Lee, Y. H. & Kim, Y. S. (2006). Curr. Appl. Phys.6, 620–626.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography