PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m22.
Published online 2008 December 6. doi:  10.1107/S160053680804035X
PMCID: PMC2967870

Bis[μ-3-ethyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole]bis­[dichloridocopper(II)]

Abstract

The asymmetric unit of the title compound, [Cu2Cl4(C15H14N4)2], contains two halves of two centrosymmetric dinuclear mol­ecules, A and B. The conformations of the two crystallographically independent mol­ecules are slightly different: in A, the Cu(...)Cu separation is 4.174 (9) Å and the dihedral angle between the triazole and phenyl rings is 74.23 (11)°; these values are 4.137 (9) Å and 68.58 (13)°, respectively, in B. In each mol­ecule, the copper(II) ions have a distorted trigonal–bipyramidal coordination geometry with a CuCl2NN′N′′ chromophore. The crystal packing exhibits weak inter­molecular C—H(...)Cl inter­actions.

Related literature

For the magnetic and spin-crossover properties of 1,2,4-triazole complexes, see: Kahn & Martinez (1998 [triangle]); Klingele et al. (2005 [triangle]); Matouzenko et al. (2004 [triangle]); Moliner et al. (2001 [triangle]); For the fluorescent properties of 1,2,4-triazole complexes, see: Chen et al. (2008 [triangle]); Matsukizono et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m22-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C15H14N4)2]
  • M r = 769.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m22-efi1.jpg
  • a = 9.3395 (11) Å
  • b = 12.8096 (14) Å
  • c = 13.9234 (16) Å
  • α = 92.533 (2)°
  • β = 94.596 (2)°
  • γ = 90.452 (2)°
  • V = 1658.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.64 mm−1
  • T = 273 (2) K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.62, T max = 0.68
  • 8289 measured reflections
  • 5716 independent reflections
  • 4065 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.069
  • S = 1.05
  • 5716 reflections
  • 399 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680804035X/cv2472sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804035X/cv2472Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Jingye Pharmachemical Pilot Plant for financial assistance though project No. 8507041056.

supplementary crystallographic information

Comment

As the 1,2,4-triazole ring posesses strong electron donors and coordination capability to transition metal ions, the coordination chemistry of 1,2,4-triazole derivatives has gained great attention in recent years (Klingele et al., 2005; Chen et al., 2008; Matsukizono et al., 2008). Some complexes of 1,2,4-triazoles with iron(II) have spin-crossover properties, which can be used as molecular-based memory devices, displays and optical switches (Kahn & Martinez, 1998; Moliner et al., 2001; Matouzenko et al., 2004). We report here the crystal structure analysis of the title compound, (I) (Fig. 1).

The asymmetric unit of the title compound contains two halves of two centrosymmetric dinuclear molecules, A and B, respectively. In A, the dihedral angle between the triazole and pyridine rings is 11.21 (16)°, and that between the triazole and benzene rings is 74.22 (11)°; those values in B are 9.02 (16)° and 68.58 (13)°, respectively.

The crystal packing exhibits weak intermolecular C—H···Cl interactions (Table 1).

Experimental

The title compound was prepared by reaction of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole with copper(II) chloride in ethanol and water. To a warm solution of 0.501 grams of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (2.0 mmol) in 10 ml e thanol, 0.682 grams of copper(II) chloride dihydrate (4.0 mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days, and single crystals suitable for X-ray diffraction were collected.

Refinement

All H atoms were first located in a difference Fourier map, but placed in idealized positions (C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene)), and allowed to ride on their parent atoms with Uiso(H) values of 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
View of (I) with the atomic labelling and 30% probability displacement ellipsoids [symmetry codes: (i) -x + 1,-y + 2,-z; (ii) -x,-y + 1,-z + 1.

Crystal data

[Cu2Cl4(C15H14N4)2]Z = 2
Mr = 769.48F(000) = 780
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3395 (11) ÅCell parameters from 2456 reflections
b = 12.8096 (14) Åθ = 2.2–24.2°
c = 13.9234 (16) ŵ = 1.64 mm1
α = 92.533 (2)°T = 273 K
β = 94.596 (2)°Block, green
γ = 90.452 (2)°0.30 × 0.26 × 0.24 mm
V = 1658.6 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer5716 independent reflections
Radiation source: sealed tube4065 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→11
Tmin = 0.62, Tmax = 0.68k = −15→10
8289 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.01P)2] where P = (Fo2 + 2Fc2)/3
5716 reflections(Δ/σ)max = 0.004
399 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.61708 (5)0.91845 (3)−0.09989 (3)0.04319 (14)
Cu20.14043 (5)0.57176 (3)0.60559 (3)0.04375 (14)
Cl10.52503 (13)0.75357 (7)−0.12247 (7)0.0706 (4)
Cl20.71352 (11)1.02338 (8)−0.20518 (8)0.0645 (3)
Cl30.05265 (12)0.73248 (7)0.64432 (7)0.0655 (3)
Cl40.25757 (11)0.44618 (8)0.68906 (8)0.0663 (3)
N10.8159 (3)0.8654 (2)−0.0588 (2)0.0443 (8)
N20.6455 (3)0.9681 (2)0.05218 (19)0.0379 (7)
N30.5746 (3)1.0170 (2)0.1247 (2)0.0402 (8)
N40.7742 (3)0.9542 (2)0.1897 (2)0.0377 (7)
N50.3290 (3)0.6315 (2)0.5707 (2)0.0428 (8)
N60.1338 (3)0.5377 (2)0.45041 (19)0.0381 (7)
N70.0455 (3)0.4958 (2)0.3749 (2)0.0388 (8)
N80.2338 (3)0.5611 (2)0.3164 (2)0.0401 (8)
C10.9021 (5)0.8246 (3)−0.1216 (3)0.0562 (11)
H10.86620.8134−0.18550.067*
C21.0420 (4)0.7983 (3)−0.0963 (3)0.0551 (11)
H21.09880.7685−0.14190.066*
C31.0958 (4)0.8167 (3)−0.0029 (3)0.0557 (11)
H31.19090.80140.01590.067*
C41.0069 (4)0.8582 (3)0.0633 (3)0.0500 (10)
H41.04060.87020.12760.060*
C50.8689 (4)0.8814 (3)0.0330 (3)0.0384 (9)
C60.7641 (4)0.9318 (2)0.0928 (3)0.0369 (9)
C70.6528 (4)1.0085 (3)0.2065 (3)0.0394 (9)
C80.6207 (4)1.0541 (3)0.3019 (2)0.0553 (11)
H8A0.53691.09800.29300.066*
H8B0.70071.09880.32680.066*
C90.5929 (5)0.9754 (4)0.3773 (3)0.0924 (16)
H9A0.51750.92800.35230.139*
H9B0.56491.01170.43450.139*
H9C0.67890.93700.39260.139*
C100.8771 (4)0.9203 (3)0.2639 (2)0.0389 (9)
C110.8735 (4)0.8180 (3)0.2893 (3)0.0533 (11)
H110.80950.77030.25650.064*
C120.9657 (5)0.7877 (3)0.3639 (3)0.0658 (13)
H120.96450.71860.38160.079*
C131.0597 (5)0.8572 (4)0.4129 (3)0.0666 (13)
H131.12120.83550.46390.080*
C141.0629 (4)0.9590 (4)0.3866 (3)0.0593 (12)
H141.12701.00640.41960.071*
C150.9716 (4)0.9910 (3)0.3117 (3)0.0464 (10)
H150.97371.06000.29360.056*
C160.4266 (4)0.6705 (3)0.6369 (3)0.0557 (11)
H160.40340.67730.70060.067*
C170.5618 (5)0.7017 (3)0.6151 (3)0.0618 (12)
H170.62750.73010.66300.074*
C180.5970 (5)0.6905 (3)0.5229 (3)0.0628 (12)
H180.68840.70880.50700.075*
C190.4956 (4)0.6514 (3)0.4526 (3)0.0579 (12)
H190.51700.64450.38850.069*
C200.3628 (4)0.6231 (3)0.4788 (3)0.0423 (10)
C210.2472 (4)0.5760 (2)0.4143 (2)0.0383 (9)
C220.1065 (4)0.5101 (3)0.2944 (3)0.0407 (10)
C230.0445 (4)0.4789 (3)0.1960 (3)0.0544 (11)
H23A−0.03990.43550.20130.065*
H23B0.11390.43670.16420.065*
C240.0022 (5)0.5691 (3)0.1334 (3)0.0805 (15)
H24A−0.06590.61200.16440.121*
H24B−0.04030.54240.07200.121*
H24C0.08600.61010.12390.121*
C250.3299 (4)0.5928 (3)0.2453 (2)0.0425 (10)
C260.3472 (4)0.6965 (3)0.2290 (3)0.0548 (11)
H260.30040.74740.26410.066*
C270.4356 (5)0.7235 (3)0.1596 (3)0.0691 (13)
H270.44870.79340.14690.083*
C280.5050 (5)0.6471 (4)0.1087 (3)0.0734 (14)
H280.56460.66590.06170.088*
C290.4870 (5)0.5437 (4)0.1266 (3)0.0655 (13)
H290.53440.49270.09210.079*
C300.3985 (4)0.5157 (3)0.1956 (3)0.0522 (11)
H300.38540.44580.20850.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0498 (3)0.0414 (3)0.0382 (3)0.0052 (2)0.0051 (2)−0.0032 (2)
Cu20.0533 (3)0.0406 (3)0.0373 (3)−0.0008 (2)0.0068 (2)−0.0036 (2)
Cl10.1114 (10)0.0409 (6)0.0567 (7)−0.0113 (6)−0.0079 (7)−0.0003 (5)
Cl20.0555 (7)0.0697 (7)0.0714 (8)−0.0007 (6)0.0146 (6)0.0207 (6)
Cl30.0942 (9)0.0391 (6)0.0654 (8)0.0070 (6)0.0238 (7)−0.0036 (5)
Cl40.0598 (7)0.0617 (7)0.0785 (8)0.0086 (6)0.0030 (6)0.0178 (6)
N10.049 (2)0.0439 (19)0.040 (2)0.0092 (15)0.0050 (17)−0.0072 (16)
N20.043 (2)0.0409 (19)0.0296 (18)0.0014 (15)0.0044 (16)−0.0041 (14)
N30.045 (2)0.0405 (19)0.0354 (19)−0.0031 (15)0.0071 (16)−0.0055 (15)
N40.042 (2)0.0347 (18)0.0361 (19)0.0014 (15)0.0034 (16)−0.0010 (14)
N50.047 (2)0.0438 (19)0.0367 (19)−0.0040 (15)0.0073 (17)−0.0075 (15)
N60.045 (2)0.0377 (18)0.0317 (18)0.0015 (15)0.0046 (16)−0.0018 (14)
N70.045 (2)0.0374 (18)0.0343 (18)−0.0021 (14)0.0062 (16)−0.0055 (15)
N80.055 (2)0.0314 (17)0.0344 (19)0.0004 (15)0.0110 (17)−0.0014 (14)
C10.068 (3)0.062 (3)0.038 (2)0.013 (2)0.002 (2)−0.009 (2)
C20.059 (3)0.056 (3)0.052 (3)0.020 (2)0.012 (2)−0.004 (2)
C30.052 (3)0.057 (3)0.059 (3)0.015 (2)0.007 (2)0.003 (2)
C40.052 (3)0.061 (3)0.037 (2)0.004 (2)0.005 (2)0.000 (2)
C50.042 (3)0.034 (2)0.039 (2)0.0020 (18)0.004 (2)−0.0001 (18)
C60.044 (3)0.033 (2)0.033 (2)−0.0031 (18)0.003 (2)−0.0015 (18)
C70.042 (3)0.041 (2)0.035 (2)−0.0011 (19)0.003 (2)0.0021 (18)
C80.052 (3)0.074 (3)0.038 (2)0.012 (2)0.004 (2)−0.014 (2)
C90.096 (4)0.141 (5)0.044 (3)0.022 (3)0.022 (3)0.018 (3)
C100.043 (2)0.044 (2)0.031 (2)0.0070 (19)0.0064 (19)0.0028 (19)
C110.068 (3)0.041 (3)0.050 (3)0.002 (2)0.002 (2)0.002 (2)
C120.083 (4)0.049 (3)0.068 (3)0.018 (3)0.012 (3)0.017 (2)
C130.066 (3)0.093 (4)0.040 (3)0.021 (3)−0.004 (2)0.015 (3)
C140.055 (3)0.079 (3)0.042 (3)−0.002 (2)−0.001 (2)−0.007 (2)
C150.054 (3)0.048 (2)0.038 (2)0.001 (2)0.006 (2)0.003 (2)
C160.062 (3)0.064 (3)0.041 (3)−0.010 (2)0.006 (2)−0.009 (2)
C170.059 (3)0.069 (3)0.056 (3)−0.014 (2)−0.003 (2)−0.005 (2)
C180.052 (3)0.072 (3)0.066 (3)−0.014 (2)0.012 (3)0.001 (3)
C190.057 (3)0.070 (3)0.047 (3)−0.006 (2)0.009 (2)−0.004 (2)
C200.048 (3)0.037 (2)0.043 (2)0.0023 (19)0.008 (2)−0.0002 (18)
C210.049 (3)0.032 (2)0.034 (2)0.0051 (18)0.005 (2)−0.0022 (17)
C220.053 (3)0.031 (2)0.039 (2)0.0023 (18)0.009 (2)−0.0044 (18)
C230.062 (3)0.059 (3)0.041 (3)−0.006 (2)0.010 (2)−0.012 (2)
C240.107 (4)0.090 (4)0.043 (3)0.000 (3)−0.008 (3)0.015 (3)
C250.053 (3)0.044 (2)0.032 (2)0.001 (2)0.0100 (19)0.0029 (18)
C260.067 (3)0.041 (3)0.059 (3)0.000 (2)0.012 (2)0.006 (2)
C270.077 (4)0.062 (3)0.070 (3)−0.006 (3)0.007 (3)0.024 (3)
C280.070 (4)0.108 (4)0.044 (3)−0.005 (3)0.013 (3)0.018 (3)
C290.073 (3)0.081 (4)0.044 (3)0.012 (3)0.018 (2)−0.002 (2)
C300.069 (3)0.050 (3)0.039 (2)0.007 (2)0.013 (2)0.001 (2)

Geometric parameters (Å, °)

Cu1—N3i1.989 (3)C9—H9A0.9600
Cu1—N12.029 (3)C9—H9B0.9600
Cu1—N22.179 (3)C9—H9C0.9600
Cu1—Cl22.2657 (11)C10—C151.372 (5)
Cu1—Cl12.2734 (10)C10—C111.374 (4)
Cu2—N7ii1.977 (3)C11—C121.367 (5)
Cu2—N52.018 (3)C11—H110.9300
Cu2—N62.181 (3)C12—C131.366 (5)
Cu2—Cl42.2637 (12)C12—H120.9300
Cu2—Cl32.2804 (11)C13—C141.371 (5)
N1—C11.328 (4)C13—H130.9300
N1—C51.340 (4)C14—C151.373 (5)
N2—C61.302 (4)C14—H140.9300
N2—N31.382 (3)C15—H150.9300
N3—C71.311 (4)C16—C171.382 (5)
N3—Cu1i1.989 (3)C16—H160.9300
N4—C61.362 (4)C17—C181.352 (5)
N4—C71.365 (4)C17—H170.9300
N4—C101.438 (4)C18—C191.380 (5)
N5—C161.322 (4)C18—H180.9300
N5—C201.342 (4)C19—C201.371 (5)
N6—C211.309 (4)C19—H190.9300
N6—N71.371 (3)C20—C211.457 (5)
N7—C221.317 (4)C22—C231.480 (5)
N7—Cu2ii1.977 (3)C23—C241.515 (5)
N8—C221.358 (4)C23—H23A0.9700
N8—C211.364 (4)C23—H23B0.9700
N8—C251.457 (4)C24—H24A0.9600
C1—C21.374 (5)C24—H24B0.9600
C1—H10.9300C24—H24C0.9600
C2—C31.366 (5)C25—C261.367 (4)
C2—H20.9300C25—C301.373 (4)
C3—C41.382 (4)C26—C271.374 (5)
C3—H30.9300C26—H260.9300
C4—C51.362 (5)C27—C281.379 (5)
C4—H40.9300C27—H270.9300
C5—C61.471 (4)C28—C291.369 (5)
C7—C81.482 (4)C28—H280.9300
C8—C91.522 (5)C29—C301.375 (5)
C8—H8A0.9700C29—H290.9300
C8—H8B0.9700C30—H300.9300
N3i—Cu1—N1172.45 (11)H9A—C9—H9B109.5
N3i—Cu1—N295.70 (10)C8—C9—H9C109.5
N1—Cu1—N277.15 (11)H9A—C9—H9C109.5
N3i—Cu1—Cl291.19 (9)H9B—C9—H9C109.5
N1—Cu1—Cl289.93 (9)C15—C10—C11121.0 (4)
N2—Cu1—Cl2116.78 (8)C15—C10—N4119.9 (3)
N3i—Cu1—Cl192.67 (8)C11—C10—N4118.9 (3)
N1—Cu1—Cl192.30 (8)C12—C11—C10118.6 (4)
N2—Cu1—Cl1112.17 (8)C12—C11—H11120.7
Cl2—Cu1—Cl1130.20 (4)C10—C11—H11120.7
N7ii—Cu2—N5173.36 (11)C13—C12—C11121.2 (4)
N7ii—Cu2—N696.47 (10)C13—C12—H12119.4
N5—Cu2—N677.15 (11)C11—C12—H12119.4
N7ii—Cu2—Cl490.06 (9)C12—C13—C14119.7 (4)
N5—Cu2—Cl490.60 (9)C12—C13—H13120.2
N6—Cu2—Cl4111.51 (8)C14—C13—H13120.2
N7ii—Cu2—Cl391.26 (8)C13—C14—C15120.1 (4)
N5—Cu2—Cl392.95 (8)C13—C14—H14119.9
N6—Cu2—Cl3113.03 (8)C15—C14—H14119.9
Cl4—Cu2—Cl3134.97 (4)C10—C15—C14119.3 (4)
C1—N1—C5117.9 (3)C10—C15—H15120.3
C1—N1—Cu1122.4 (3)C14—C15—H15120.3
C5—N1—Cu1119.3 (2)N5—C16—C17122.5 (4)
C6—N2—N3106.7 (3)N5—C16—H16118.8
C6—N2—Cu1111.1 (2)C17—C16—H16118.8
N3—N2—Cu1141.9 (2)C18—C17—C16119.0 (4)
C7—N3—N2108.3 (3)C18—C17—H17120.5
C7—N3—Cu1i129.5 (2)C16—C17—H17120.5
N2—N3—Cu1i122.2 (2)C17—C18—C19119.2 (4)
C6—N4—C7105.2 (3)C17—C18—H18120.4
C6—N4—C10130.0 (3)C19—C18—H18120.4
C7—N4—C10124.5 (3)C20—C19—C18118.8 (4)
C16—N5—C20118.4 (3)C20—C19—H19120.6
C16—N5—Cu2122.0 (3)C18—C19—H19120.6
C20—N5—Cu2119.4 (2)N5—C20—C19122.0 (3)
C21—N6—N7107.3 (3)N5—C20—C21112.5 (3)
C21—N6—Cu2111.1 (2)C19—C20—C21125.4 (3)
N7—N6—Cu2141.4 (2)N6—C21—N8109.6 (3)
C22—N7—N6108.4 (3)N6—C21—C20119.5 (3)
C22—N7—Cu2ii129.7 (3)N8—C21—C20130.9 (3)
N6—N7—Cu2ii122.0 (2)N7—C22—N8108.7 (3)
C22—N8—C21106.1 (3)N7—C22—C23125.6 (3)
C22—N8—C25124.3 (3)N8—C22—C23125.7 (3)
C21—N8—C25129.6 (3)C22—C23—C24114.7 (3)
N1—C1—C2123.0 (4)C22—C23—H23A108.6
N1—C1—H1118.5C24—C23—H23A108.6
C2—C1—H1118.5C22—C23—H23B108.6
C3—C2—C1118.6 (4)C24—C23—H23B108.6
C3—C2—H2120.7H23A—C23—H23B107.6
C1—C2—H2120.7C23—C24—H24A109.5
C2—C3—C4119.0 (4)C23—C24—H24B109.5
C2—C3—H3120.5H24A—C24—H24B109.5
C4—C3—H3120.5C23—C24—H24C109.5
C5—C4—C3118.9 (4)H24A—C24—H24C109.5
C5—C4—H4120.5H24B—C24—H24C109.5
C3—C4—H4120.5C26—C25—C30122.4 (4)
N1—C5—C4122.5 (3)C26—C25—N8119.8 (3)
N1—C5—C6111.9 (3)C30—C25—N8117.8 (3)
C4—C5—C6125.5 (3)C25—C26—C27118.3 (4)
N2—C6—N4110.7 (3)C25—C26—H26120.9
N2—C6—C5119.8 (3)C27—C26—H26120.9
N4—C6—C5129.3 (4)C26—C27—C28120.2 (4)
N3—C7—N4109.1 (3)C26—C27—H27119.9
N3—C7—C8126.4 (4)C28—C27—H27119.9
N4—C7—C8124.4 (3)C29—C28—C27120.6 (4)
C7—C8—C9115.4 (3)C29—C28—H28119.7
C7—C8—H8A108.4C27—C28—H28119.7
C9—C8—H8A108.4C28—C29—C30119.8 (4)
C7—C8—H8B108.4C28—C29—H29120.1
C9—C8—H8B108.4C30—C29—H29120.1
H8A—C8—H8B107.5C25—C30—C29118.8 (4)
C8—C9—H9A109.5C25—C30—H30120.6
C8—C9—H9B109.5C29—C30—H30120.6

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2iii0.932.783.445 (4)129
C15—H15···Cl3iv0.932.783.579 (4)145
C16—H16···Cl1v0.932.763.518 (4)139
C19—H19···Cl4vi0.932.693.365 (4)130

Symmetry codes: (iii) −x+2, −y+2, −z; (iv) −x+1, −y+2, −z+1; (v) x, y, z+1; (vi) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2472).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z. L., Li, X. L. & Liang, F. P. (2008). J. Solid State Chem.181, 2078–2086.
  • Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.
  • Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.
  • Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem.43, 227–236. [PubMed]
  • Matsukizono, H., Kuroiwa, K. & Kimizuka, N. (2008). Chem. Lett.37, 446–447.
  • Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem.40, 3986–3991. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography