PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m19.
Published online 2008 December 6. doi:  10.1107/S160053680803849X
PMCID: PMC2967868

Bis[glycinium(0.5+)] perrhenate

Abstract

All the residues of the title compound, (C2H5.5NO2)2[ReO4], are located in general crystallographic positions. The glycine mol­ecules have usual conformations [Rodrigues Matos Beja et al. (2006 [triangle]). Acta Cryst. C62, o71–o72] with the H atom of the carboxylate group half-occupied, thus bearing a formal half-positive charge per molecule. The perrhenate anion has nearly ideal tetra­hedral geometry. A large number of strong hydrogen bonds give rise to the overall three-dimensional network. A two-dimensional network, parallel to (100), is made up of strong O—H(...)O hydrogen bonds with a donor acceptor distance of 2.445 (2) Å. A large number of weaker O—H(...)O and N—H(...)O hydrogen bonds consolidates the structure into an overall three-dimensional network.

Related literature

For a related structure, see: Rodrigues et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m19-scheme1.jpg

Experimental

Crystal data

  • (C2H5.5NO2)2[ReO4]
  • M r = 401.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m19-efi1.jpg
  • a = 15.7095 (5) Å
  • b = 8.1826 (3) Å
  • c = 8.2909 (3) Å
  • β = 103.7152 (16)°
  • V = 1035.36 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.77 mm−1
  • T = 291 (2) K
  • 0.15 × 0.13 × 0.10 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.18, T max = 0.31
  • 78826 measured reflections
  • 8587 independent reflections
  • 6232 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.055
  • S = 1.06
  • 8587 reflections
  • 141 parameters
  • H-atom parameters constrained
  • Δρmax = 2.33 e Å−3
  • Δρmin = −2.87 e Å−3

Data collection: APEX2 (Bruker–Nonius, 2004 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803849X/rn2049sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803849X/rn2049Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT).

supplementary crystallographic information

Experimental

Crystals of the monoclinic polymorph of glycinium glycine perrhenate were obtained from a water solution of analytical grade reagents glycine(99.5%) and perrhenic acid solution (65–75% water, 99.5%), purchased from Aldrich, in a 2:1 molar ratio.

Refinement

The structure was solved by direct methods using SHELXS97. All H atoms were first located on a difference Fourier map; those bonded to C atoms and carboxyl O atoms were placed at idealized positions and refined as riding [C—H=0.97 and 0.98 Å, O—H=0.82 Å, Uiso(H)=1.2Ueq(C) and Uiso(H)=1.5Ueq(O)].

Examination of the crystal structure with PLATON (Spek, 2003) showed that there are no solvent-accessible voids in the crystal lattice.

Figures

Fig. 1.
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
Fig. 2.
Packing of glycine molecules showing the (100) network.

Crystal data

2(C2H5.5NO2)[ReO4]F(000) = 752
Mr = 401.35Dx = 2.575 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7839 reflections
a = 15.7095 (5) Åθ = 4.0–40.1°
b = 8.1826 (3) ŵ = 11.77 mm1
c = 8.2909 (3) ÅT = 291 K
β = 103.7152 (16)°Block, translucent colourless
V = 1035.36 (6) Å30.15 × 0.13 × 0.10 mm
Z = 4

Data collection

Bruker APEXII diffractometer8587 independent reflections
Radiation source: fine-focus sealed tube6232 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 45.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −30→31
Tmin = 0.18, Tmax = 0.31k = −16→15
78826 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.055w = 1/[σ2(Fo2) + (0.001P)2 + 2.2865P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
8587 reflectionsΔρmax = 2.33 e Å3
141 parametersΔρmin = −2.87 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00614 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Re10.384633 (5)0.604894 (11)0.053166 (13)0.02896 (3)
O10.43021 (16)0.4923 (4)0.2269 (3)0.0636 (7)
O20.28327 (14)0.6733 (3)0.0625 (4)0.0633 (8)
O30.44936 (16)0.7699 (3)0.0397 (5)0.0685 (9)
O40.3784 (2)0.4775 (4)−0.1121 (3)0.0698 (8)
O110.02851 (12)0.9119 (2)0.2663 (2)0.0343 (4)
O12−0.02823 (11)0.7477 (2)0.0538 (2)0.0366 (4)
H12−0.07470.78900.06140.055*0.50
C110.03285 (13)0.7965 (3)0.1730 (3)0.0242 (3)
C120.11921 (13)0.7067 (3)0.1971 (3)0.0291 (4)
H12A0.16080.77540.15880.035*
H12B0.14240.68640.31450.035*
N110.11042 (11)0.5501 (2)0.1070 (2)0.0253 (3)
H11A0.07610.48330.14790.038*
H11B0.16310.50480.11890.038*
H11C0.08680.5676−0.00020.038*
O210.24920 (12)0.3008 (2)0.0961 (3)0.0409 (4)
O220.16419 (12)0.1024 (3)−0.0423 (3)0.0504 (6)
H220.12410.1641−0.03530.076*0.50
C210.23754 (14)0.1710 (3)0.0210 (3)0.0281 (4)
C220.31325 (16)0.0716 (3)−0.0074 (4)0.0373 (5)
H22A0.3076−0.03990.02860.045*
H22B0.31090.0690−0.12540.045*
N210.39933 (12)0.1372 (3)0.0823 (3)0.0337 (4)
H21A0.39230.23720.11940.051*
H21B0.43510.14170.01360.051*
H21C0.42240.07240.16760.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re10.02220 (4)0.02717 (4)0.04083 (5)−0.00013 (3)0.01407 (3)−0.00404 (3)
O10.0401 (12)0.093 (2)0.0524 (14)−0.0127 (13)−0.0001 (10)0.0177 (14)
O20.0333 (10)0.0379 (10)0.130 (2)0.0040 (8)0.0416 (13)−0.0007 (13)
O30.0467 (12)0.0383 (11)0.136 (3)−0.0090 (9)0.0521 (16)−0.0019 (14)
O40.080 (2)0.083 (2)0.0523 (15)−0.0094 (16)0.0276 (14)−0.0268 (14)
O110.0309 (7)0.0398 (9)0.0320 (8)0.0054 (7)0.0069 (6)−0.0106 (7)
O120.0226 (7)0.0378 (9)0.0440 (10)0.0077 (6)−0.0031 (7)−0.0144 (7)
C110.0206 (7)0.0270 (8)0.0257 (9)0.0011 (6)0.0068 (6)−0.0006 (7)
C120.0194 (7)0.0314 (9)0.0348 (11)0.0015 (7)0.0029 (7)−0.0069 (8)
N110.0187 (6)0.0262 (7)0.0300 (9)0.0035 (5)0.0043 (6)0.0002 (6)
O210.0259 (7)0.0310 (8)0.0635 (13)0.0041 (6)0.0063 (8)−0.0144 (8)
O220.0219 (7)0.0475 (11)0.0747 (15)0.0057 (7)−0.0029 (8)−0.0284 (11)
C210.0213 (8)0.0288 (9)0.0323 (10)0.0054 (7)0.0027 (7)−0.0034 (8)
C220.0254 (9)0.0429 (13)0.0417 (13)0.0092 (9)0.0043 (9)−0.0133 (10)
N210.0217 (7)0.0309 (9)0.0490 (12)0.0096 (6)0.0094 (8)0.0134 (8)

Geometric parameters (Å, °)

Re1—O41.706 (3)N11—H11B0.8900
Re1—O21.707 (2)N11—H11C0.8900
Re1—O31.710 (2)O21—C211.223 (3)
Re1—O11.717 (3)O22—C211.277 (3)
O11—C111.233 (3)O22—H220.8200
O12—C111.267 (3)C21—C221.505 (3)
O12—H120.8200C22—N211.481 (3)
C11—C121.514 (3)C22—H22A0.9700
C12—N111.473 (3)C22—H22B0.9700
C12—H12A0.9700N21—H21A0.8900
C12—H12B0.9700N21—H21B0.8900
N11—H11A0.8900N21—H21C0.8900
O4—Re1—O2111.10 (15)C12—N11—H11C109.5
O4—Re1—O3110.60 (15)H11A—N11—H11C109.5
O2—Re1—O3108.64 (11)H11B—N11—H11C109.5
O4—Re1—O1106.21 (17)C21—O22—H22109.5
O2—Re1—O1110.24 (14)O21—C21—O22127.1 (2)
O3—Re1—O1110.03 (15)O21—C21—C22121.4 (2)
C11—O12—H12109.5O22—C21—C22111.5 (2)
O11—C11—O12125.87 (19)N21—C22—C21112.7 (2)
O11—C11—C12118.03 (19)N21—C22—H22A109.0
O12—C11—C12116.08 (18)C21—C22—H22A109.0
N11—C12—C11112.44 (17)N21—C22—H22B109.0
N11—C12—H12A109.1C21—C22—H22B109.0
C11—C12—H12A109.1H22A—C22—H22B107.8
N11—C12—H12B109.1C22—N21—H21A109.5
C11—C12—H12B109.1C22—N21—H21B109.5
H12A—C12—H12B107.8H21A—N21—H21B109.5
C12—N11—H11A109.5C22—N21—H21C109.5
C12—N11—H11B109.5H21A—N21—H21C109.5
H11A—N11—H11B109.5H21B—N21—H21C109.5
O11—C11—C12—N11166.3 (2)O21—C21—C22—N217.3 (4)
O12—C11—C12—N11−15.7 (3)O22—C21—C22—N21−172.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O12—H12···O22i0.821.642.445 (2)167
N11—H11A···O11ii0.892.022.869 (2)158
N11—H11B···O210.892.183.003 (2)153
N11—H11B···O20.892.473.000 (3)119
N11—H11C···O11iii0.891.942.830 (3)175
O22—H22···O12i0.821.642.445 (2)165
N21—H21A···O210.892.272.738 (3)113
N21—H21A···O10.892.293.136 (4)158
N21—H21B···O3iv0.892.102.896 (3)149
N21—H21B···O1v0.892.603.274 (4)133
N21—H21C···O4vi0.892.142.794 (3)130
N21—H21C···O1vii0.892.373.012 (3)130

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z−1/2; (vi) x, −y+1/2, z+1/2; (vii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2049).

References

  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rodrigues, V. H., Matos Beja, A., Paixão, J. A. & Costa, M. M. R. R. (2006). Acta Cryst. C62, o71–o72. [PubMed]
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography