PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m17–m18.
Published online 2008 December 6. doi:  10.1107/S1600536808040282
PMCID: PMC2967867

Poly[ethyl­enediaminium [di-μ-aqua-(μ6-benzene-1,2,4,5-tetra­carboxyl­ato-κ10 O 1,O 1′:O 2,O 2′:O 2′:O 4,O 4′:O 5:O 5,O 5′)dithallium(I)]]

Abstract

The title compound, {(C2H10N2)[Tl2(C10H2O8)(H2O)2)]}n, was prepared using (enH2)2(btc)·2H2O and thallium(I) nitrate (en = ethyl­enediamine and btcH4 = benzene-1,2,4,5-tetra­carboxylic acid). The enH2 cation and btc ligand are each located on an inversion centre. The TlI atom is seven-coordinated by three btc ligands and two water mol­ecules in an irregular geometry due to the stereochemically active lone pair on the Tl centre. The water mol­ecule and btc ligand are bonded to the Tl atoms in μ- and μ6-forms, respectively, leading to a three-dimensional structure. The crystal structure involves O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds, and also a Tl(...)π inter­action of 3.537 (1) Å.

Related literature

For general background, see: Akhbari & Morsali (2008 [triangle]); Day & Luehrs (1988 [triangle]); Fabelo et al. (2005 [triangle]); Murugavel et al. (2000 [triangle]); Shimoni-Livny et al. (1998 [triangle]). For related structures, see: Li et al. (2008 [triangle]); Rafizadeh et al. (2005 [triangle], 2007a [triangle],b [triangle]). For the ligand synthesis, see: Rafizadeh et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m17-scheme1.jpg

Experimental

Crystal data

  • (C2H10N2)[Tl2(C10H2O8)(H2O)2)]
  • M r = 757.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m17-efi5.jpg
  • a = 9.925 (5) Å
  • b = 7.073 (4) Å
  • c = 11.325 (6) Å
  • β = 98.397 (10)°
  • V = 786.5 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 20.53 mm−1
  • T = 100 (2) K
  • 0.16 × 0.12 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.064, T max = 0.201
  • 5272 measured reflections
  • 1787 independent reflections
  • 1487 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.070
  • S = 1.00
  • 1787 reflections
  • 107 parameters
  • H-atom parameters constrained
  • Δρmax = 2.02 e Å−3
  • Δρmin = −1.80 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040282/hy2169sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040282/hy2169Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thallium reagents, despite their inherent toxicity and cost, have played a conspicuous role in the development of modern inorganic and organometallic chemistry. Thallium(I) chemistry is very interesting due to a variety of reasons. (a) Thallium salts and complexes are often anhydrous. (b) The lone pair on thallium may or may not be stereochemically active. (c) High coordination number presents because of large size of TlI ion. (d) Thallium(I) complexes have potential ability to form metal–metal bonds and thallium(I) also forms complexes with aromatic hydrocarbons (Akhbari & Morsali, 2008).

The deprotonated forms of benzene-1,2,4,5-tetracarboxylic acid (btcH4) can act not only as hydrogen bond acceptors but also as hydrogen bond donors, depending on the deprotonated carboxylate groups, to give different supramolecular adducts (Fabelo et al., 2005). There is an instance of benzene-1,2,4,5-tetracarboxylate coordinated to thallium in a mixed ligand system (Day & Luehrs, 1988). However, there are some coordination polymers reported that contain an anionic coordination polymer together with a cationic part, such as metal–organic framework-based hydrogen-bonded porous solids, [(pipzH2)M(btc)(H2O)4.4H2O]n (M = CoII, NiII, ZnII; pipz = piperazine) (Murugavel et al., 2000). As the recent examples of this category, CuII and ZnII anionic coordination polymers with ethylenediaminium and propane-1,2-diaminium (pn) as counter ions, {(enH2)[Cu(btc)].2.5H2O}n (Rafizadeh et al., 2007a) and {(pnH2)[Zn(btc)].4H2O]}n (Rafizadeh et al., 2007b), have been synthesized.

In the title compound (Fig. 1), the coordination behavior of carboxylate groups of btc are different. Compared with another TlI complex, [Tl(pydcH)]n (pydcH2 = pyridine-2,6-dicarboxylic acid), with the bond lengths of Tl—O being 2.853 (6) and 3.019 (6) Å (Rafizadeh et al., 2005), the Tl—O bond lengths of the title compound are in a more extended range [2.702 (5) to 3.350 (5) Å] (Table 1). In the crystal structure, O—H···O, N—H···O and C—H···O hydrogen bonds are present. Moreover, an interesting Tl···π interaction is found that is classified as cation···π interaction at a Tl–centroid distance of 3.537 (1) Å, as shown in Fig. 2. These interactions make all components assemble together in a packing arrangement.

As illustrated in Fig. 1, coordination number of the TlI atom is seven, with all coordinated atoms forced into one side of TlI and other side is left empty. This can be caused by the stereochemically active lone pair on TlI center. Based on crystal data available in the Cambridge Structural Database, stereochemistry of PbII complexes has been reviewed (Shimoni-Livny et al., 1998). Evidently, in the case of PbII complexes when the lone pair appears to have no steric effects, the bonds with ligand donor atoms are arranged throughout the surface of encompassing sphere (holodirected coordination) and there are no marked differences in the Pb—L bond lengths. But the PbII complexes, in which the lone pair is stereochemically active, have hemidirected coordination and the Pb—L bonds are directed only to a part of the coordination sphere, leaving a gap in the distribution of bonds to the ligands. There are shorter Pb—L bonds away from the proposed site of the lone pair and longer Pb—L bonds adjacent to this site of the lone pair (Li et al., 2008). Here also, the TlI atom shows the same behavior. In effect, the Tl1—O3ii and Tl1—O1Wiii (symmetry codes: (ii) -1+x, y, z; (iii) -x, -y, 1-z), that are apparently longer than other bonds (see Fig. 1 and Table 1), lie on the side of the putative lone pair and the shorter bonds lie away from the site of the lone pair.

Experimental

An aqueous solution of (enH2)2(btc).2H2O (0.34 g, 0.82 mmol), synthesized according to the literature (Rafizadeh et al., 2006), was added dropwise to a solution of TlNO3 (0.061 g, 0.23 mmol) in water. The mixture was slightly heated and stirred for 5 h. The obtained clear solution with a volume of 40 ml was left at room temperature for 40 d. Then the lustrous pale yellow crystals were obtained (decomposing temperature > 673 K).

Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.99 (CH2) Å and N—H = 0.91 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located on a difference Fourier map and fixed in the refinements, with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 0.88 Å from atom Tl1 and the deepest hole 1.36 Å from atom Tl1.

Figures

Fig. 1.
Coordination environment around the Tl atom in the title compound, showing an empty space on one side of the atom Tl1. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2-x, -1/2+y, 3/2-z; (ii) -1+x, y, z; (iii) -x, ...
Fig. 2.
Tl···π interactions with a Tl–centroid distance of 3.537 (1) Å. [Symmetry codes: (i) 1/2-x, -1/2+y, 3/2-z; (viii) 1/2+x, 1/2-y, 1/2+z.]

Crystal data

(C2H10N2)[Tl2(C10H2O8)(H2O)2)]F(000) = 688
Mr = 757.01Dx = 3.197 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1231 reflections
a = 9.925 (5) Åθ = 3.4–32.7°
b = 7.073 (4) ŵ = 20.53 mm1
c = 11.325 (6) ÅT = 100 K
β = 98.397 (10)°Prism, colourless
V = 786.5 (7) Å30.16 × 0.12 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer1787 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
graphiteRint = 0.061
[var phi] and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→12
Tmin = 0.064, Tmax = 0.201k = −9→9
5272 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.070H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3
1787 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 2.02 e Å3
0 restraintsΔρmin = −1.80 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Tl1−0.05121 (3)0.10847 (4)0.68253 (2)0.01266 (11)
O10.1709 (5)−0.1391 (7)0.8360 (4)0.0122 (11)
O20.1667 (5)0.1726 (8)0.8595 (4)0.0128 (10)
O30.6799 (5)0.2759 (7)0.7972 (4)0.0130 (11)
O40.8315 (5)0.0925 (8)0.9073 (5)0.0136 (11)
C10.2231 (7)0.0140 (11)0.8761 (6)0.0105 (14)
C20.3648 (8)0.0083 (10)0.9445 (6)0.0098 (14)
C30.4680 (7)0.0882 (10)0.8919 (6)0.0085 (8)
H10.44630.14910.81680.010*
C40.6041 (7)0.0817 (10)0.9465 (6)0.0085 (8)
C50.7143 (7)0.1550 (10)0.8785 (6)0.0085 (8)
C60.5359 (8)0.0285 (11)0.5608 (6)0.0122 (15)
H20.4801−0.00870.62260.015*
H30.6244−0.03810.57750.015*
N10.5585 (6)0.2319 (8)0.5655 (5)0.0086 (12)
H40.60700.26640.50670.010*
H50.60580.26360.63780.010*
H60.47680.29270.55500.010*
O1W0.1899 (5)0.0253 (8)0.5778 (5)0.0167 (12)
H70.2389−0.07170.59650.025*
H80.23410.12440.60180.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Tl10.01330 (15)0.01092 (15)0.01267 (14)−0.00149 (13)−0.00175 (9)0.00115 (12)
O10.011 (2)0.010 (3)0.014 (2)−0.001 (2)−0.0051 (19)−0.002 (2)
O20.013 (3)0.015 (3)0.010 (2)0.004 (2)−0.001 (2)0.002 (2)
O30.014 (3)0.012 (3)0.012 (2)−0.001 (2)0.000 (2)0.006 (2)
O40.014 (3)0.013 (3)0.015 (2)0.000 (2)0.003 (2)0.003 (2)
C10.010 (3)0.017 (4)0.005 (3)0.001 (3)0.000 (3)0.001 (3)
C20.015 (4)0.004 (3)0.010 (3)0.003 (3)0.000 (3)−0.002 (3)
C30.011 (2)0.005 (2)0.0092 (17)−0.0004 (15)0.0007 (15)−0.0011 (15)
C40.011 (2)0.005 (2)0.0092 (17)−0.0004 (15)0.0007 (15)−0.0011 (15)
C50.011 (2)0.005 (2)0.0092 (17)−0.0004 (15)0.0007 (15)−0.0011 (15)
C60.014 (4)0.007 (3)0.014 (4)0.001 (3)−0.002 (3)0.001 (3)
N10.008 (3)0.008 (3)0.009 (3)0.001 (2)−0.002 (2)0.003 (2)
O1W0.019 (3)0.013 (3)0.018 (3)0.002 (2)−0.001 (2)0.001 (2)

Geometric parameters (Å, °)

Tl1—O3i2.702 (5)C3—C41.402 (10)
Tl1—O22.763 (5)C3—H10.9500
Tl1—O1W2.882 (5)C4—C2iv1.384 (10)
Tl1—O4ii2.952 (5)C4—C51.518 (10)
Tl1—O13.135 (5)C6—N11.456 (10)
Tl1—O1Wiii3.209 (5)C6—C6v1.510 (14)
Tl1—O3ii3.350 (5)C6—H20.9900
O1—C11.257 (9)C6—H30.9900
O2—C11.256 (9)N1—H40.9100
O3—C51.266 (8)N1—H50.9100
O4—C51.242 (9)N1—H60.9100
C1—C21.503 (10)O1W—H70.8500
C2—C31.378 (10)O1W—H80.8500
C2—C4iv1.384 (10)
O3i—Tl1—O2114.26 (16)C4—C3—H1119.2
O3i—Tl1—O1W106.77 (16)C2iv—C4—C3118.9 (6)
O2—Tl1—O1W73.92 (15)C2iv—C4—C5121.8 (6)
O3i—Tl1—O4ii69.06 (15)C3—C4—C5119.0 (6)
O2—Tl1—O4ii75.31 (15)O4—C5—O3125.0 (6)
O1W—Tl1—O4ii143.40 (15)O4—C5—C4117.5 (6)
O3i—Tl1—O176.67 (15)O3—C5—C4117.5 (6)
O2—Tl1—O143.70 (14)N1—C6—C6v110.3 (8)
O1W—Tl1—O163.61 (15)N1—C6—H2109.6
O4ii—Tl1—O180.47 (14)C6v—C6—H2109.6
C1—O1—Tl186.5 (4)N1—C6—H3109.6
C1—O2—Tl1104.3 (4)C6v—C6—H3109.6
C5—O3—Tl1vi127.4 (4)H2—C6—H3108.1
C5—O4—Tl1vii103.4 (4)C6—N1—H4109.5
O2—C1—O1124.3 (6)C6—N1—H5109.5
O2—C1—C2117.7 (7)H4—N1—H5109.5
O1—C1—C2118.0 (7)C6—N1—H6109.5
C3—C2—C4iv119.4 (7)H4—N1—H6109.5
C3—C2—C1117.7 (6)H5—N1—H6109.5
C4iv—C2—C1122.8 (6)Tl1—O1W—H7122.8
C2—C3—C4121.6 (7)Tl1—O1W—H896.9
C2—C3—H1119.2H7—O1W—H8109.6
O3i—Tl1—O1—C1−155.0 (4)O2—C1—C2—C4iv116.3 (8)
O2—Tl1—O1—C1−5.8 (4)O1—C1—C2—C4iv−66.1 (9)
O1W—Tl1—O1—C188.3 (4)C4iv—C2—C3—C4−0.4 (11)
O4ii—Tl1—O1—C1−84.5 (4)C1—C2—C3—C4−177.0 (6)
O3i—Tl1—O2—C139.1 (4)C2—C3—C4—C2iv0.4 (11)
O1W—Tl1—O2—C1−62.4 (4)C2—C3—C4—C5174.0 (6)
O4ii—Tl1—O2—C197.5 (4)Tl1vii—O4—C5—O3−30.4 (8)
O1—Tl1—O2—C16.0 (4)Tl1vii—O4—C5—C4150.1 (5)
Tl1—O2—C1—O1−12.6 (8)Tl1vi—O3—C5—O4−125.2 (6)
Tl1—O2—C1—C2164.9 (5)Tl1vi—O3—C5—C454.4 (8)
Tl1—O1—C1—O210.7 (6)C2iv—C4—C5—O417.5 (10)
Tl1—O1—C1—C2−166.7 (6)C3—C4—C5—O4−156.0 (6)
O2—C1—C2—C3−67.2 (8)C2iv—C4—C5—O3−162.1 (7)
O1—C1—C2—C3110.4 (8)C3—C4—C5—O324.5 (10)

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+2; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, −z+3/2; (vii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H4···O2viii0.911.902.791 (8)166
N1—H5···O30.911.852.741 (8)166
N1—H6···O1vi0.912.112.828 (8)136
N1—H6···O4ix0.912.202.942 (8)138
O1W—H7···O2i0.852.062.909 (8)172
O1W—H8···O1vi0.852.002.846 (8)177
C3—H1···O1vi0.952.453.353 (9)159
C6—H3···O3x0.992.593.523 (9)157

Symmetry codes: (viii) x+1/2, −y+1/2, z−1/2; (vi) −x+1/2, y+1/2, −z+3/2; (ix) x−1/2, −y+1/2, z−1/2; (i) −x+1/2, y−1/2, −z+3/2; (x) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2169).

References

  • Akhbari, K. & Morsali, A. (2008). J. Mol. Struct. 878, 65–70.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Day, C. S. & Luehrs, D. C. (1988). Inorg. Chim. Acta, 142, 201–202.
  • Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des.5, 1163–1167.
  • Li, D.-Q., Liu, X. & Zhou, J. (2008). Inorg. Chem. Commun.11, 367–371.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Murugavel, R., Anantharaman, G., Krishnamurthy, D., Sathiyendiran, M. & Walawalkar, M. G. (2000). J. Chem. Sci.112, 273–290.
  • Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.
  • Rafizadeh, M., Amani, V., Dehghan, L., Azadbakht, F. & Sahlolbei, E. (2007a). Acta Cryst. E63, m1841–m1842.
  • Rafizadeh, M., Amani, V. & Neumüller, B. (2005). Z. Anorg. Allg. Chem.631, 1753–1755.
  • Rafizadeh, M., Amani, V. & Zahiri, S. (2007b). Acta Cryst. E63, m1938–m1939.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem 37, 1853–1867.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography