PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m11.
Published online 2008 December 6. doi:  10.1107/S1600536808040385
PMCID: PMC2967862

(2,2′-Bipyridine)(2-formyl-6-methoxy­phenolato)nickel(II) perchlorate

Abstract

In the title compound, [Ni(C8H7O3)(C10H8N2)]ClO4, the NiII atom is in a slightly distorted square-planar coordination by two N atoms from the 2,2′-bipyridine (bipy) ligand and two O atoms from the deprotonated 2-formyl-6-methoxy­phenolate (mbd) ligand. The bipy ligand is nearly coplanar with the NiII square plane, the Ni atom being only 0.042 (2) Å from the mean plane, whereas the benzaldehyde plane is folded with respect to the square plane, making a dihedral angle of 19.17 (8)°. One of the O atoms of the perchlorate anion is involved in a weak inter­action with the Ni atom, with an Ni—O distance of 2.5732 (18) Å. The packing is stabilized by weak C—H(...)O inter­actions.

Related literature

For general background, see: Alizadeh et al. (1999 [triangle]); Hamblin et al. (2002 [triangle]); Minuti et al. (1999 [triangle]). For a related structure, see: Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00m11-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7O3)(C10H8N2)]ClO4
  • M r = 465.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00m11-efi1.jpg
  • a = 8.460 (1) Å
  • b = 9.580 (1) Å
  • c = 11.956 (2) Å
  • α = 84.45 (1)°
  • β = 80.05 (1)°
  • γ = 80.25 (1)°
  • V = 938.4 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.22 mm−1
  • T = 298 (2) K
  • 0.32 × 0.26 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.696, T max = 0.801
  • 3644 measured reflections
  • 3381 independent reflections
  • 2838 reflections with I > 2σ(I)
  • R int = 0.009

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.077
  • S = 1.04
  • 3381 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040385/dn2410sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040385/dn2410Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Young Teacher Underway Science Foundation of Southwest JiaoTong University for financial support.

supplementary crystallographic information

Comment

2,2'-Bipyridyl ligand is bidentate chelating ligand, which can commonly act as terminal ligands, and may also provide molecular interaction sites for molecular recognition or assembly (Minuti et al., 1999; Hamblin et al., 2002). On the other hand, aldehyde ligands have significant importance in chemistry, specially in the development of its complexes, because this type ligands are potentially capable of forming stable complexes with metal ions (Alizadeh et al., 1999). Herein we report the synthesis and characterization of the title complex with mixed co-ligand.

The NiII atom in the title complex, has a square coordination formed by two N atoms from Bipy ligand and two O atoms from protonated mbd ligand (Fig. 1). One of the O atom of the perchlorate anion is in weak interaction with the Ni atom with a Ni—O distance of 2.5732 (18) Å. The average Ni—N bond length of 1.98 Å is close to the values observed in related complexes (Liu et al., 2008). The occurrence of C—H···O hydrogen bonding stabilizes the packing (Table 1).

Experimental

Bipy (0.023 g, 0.12 mmol), Ni(ClO4)2 (0.028 g, 0.13 mmol) and Hmbd (0.020 g, 0.16 mmol), were added in a solvent of ethanol, the mixture was stirring were required. The resultant solution was kept at room temperature for three weeks yielding green crystals of (I)

Refinement

All H atoms attached were fixed geometrically and treated as riding on their parent C atoms with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
Molecular view of compound (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[Ni(C8H7O3)(C10H8N2)]ClO4Z = 2
Mr = 465.48F(000) = 476
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.460 (1) ÅCell parameters from 3381 reflections
b = 9.580 (1) Åθ = 1.7–25.2°
c = 11.956 (2) ŵ = 1.22 mm1
α = 84.45 (1)°T = 298 K
β = 80.05 (1)°Block, green
γ = 80.25 (1)°0.32 × 0.26 × 0.19 mm
V = 938.4 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer3381 independent reflections
Radiation source: fine-focus sealed tube2838 reflections with I > 2σ(I)
graphiteRint = 0.009
[var phi] and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = 0→10
Tmin = 0.696, Tmax = 0.801k = −11→11
3644 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.049P)2] where P = (Fo2 + 2Fc2)/3
3381 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.62596 (3)0.46273 (3)0.37323 (2)0.03207 (11)
O10.8230 (2)0.46228 (19)0.43851 (14)0.0491 (4)
O20.54224 (18)0.33979 (16)0.49436 (13)0.0397 (4)
O30.4083 (2)0.12543 (17)0.59302 (15)0.0531 (5)
N10.4407 (2)0.45896 (19)0.29274 (15)0.0356 (4)
N20.6801 (2)0.6028 (2)0.24547 (15)0.0384 (4)
C10.8713 (3)0.3669 (3)0.5099 (2)0.0539 (7)
H10.97500.36770.52580.065*
C20.7895 (3)0.2585 (3)0.5693 (2)0.0490 (6)
C30.8710 (4)0.1578 (3)0.6437 (3)0.0797 (10)
H30.97600.16540.65300.096*
C40.7985 (5)0.0514 (3)0.7010 (3)0.0935 (13)
H40.8532−0.01310.74990.112*
C50.6424 (4)0.0376 (3)0.6871 (2)0.0711 (9)
H50.5940−0.03670.72670.085*
C60.5578 (3)0.1319 (2)0.6157 (2)0.0462 (6)
C70.6294 (3)0.2479 (2)0.55657 (18)0.0390 (5)
C80.3359 (4)0.0033 (3)0.6415 (2)0.0662 (8)
H8A0.4119−0.08140.62510.099*
H8B0.23990.00150.60940.099*
H8C0.30750.00840.72250.099*
C90.3265 (3)0.3750 (3)0.3212 (2)0.0416 (5)
H90.32780.31480.38700.050*
C100.2074 (3)0.3751 (3)0.2563 (2)0.0503 (6)
H100.13000.31510.27740.060*
C110.2044 (3)0.4647 (3)0.1599 (2)0.0544 (7)
H110.12390.46680.11540.065*
C120.3211 (3)0.5518 (3)0.1291 (2)0.0512 (6)
H120.32080.61290.06370.061*
C130.4388 (3)0.5464 (2)0.19728 (18)0.0380 (5)
C140.5734 (3)0.6303 (2)0.17170 (18)0.0393 (5)
C150.5939 (4)0.7291 (3)0.0798 (2)0.0557 (7)
H150.51810.74930.03040.067*
C160.7279 (4)0.7967 (3)0.0627 (2)0.0634 (8)
H160.74350.86290.00110.076*
C170.8374 (4)0.7669 (3)0.1357 (2)0.0594 (7)
H170.92910.81130.12440.071*
C180.8102 (3)0.6699 (3)0.2267 (2)0.0484 (6)
H180.88480.65000.27700.058*
Cl0.82646 (7)0.24175 (6)0.14548 (5)0.04118 (15)
O40.8132 (2)0.2621 (2)0.26486 (14)0.0597 (5)
O50.6696 (2)0.2285 (2)0.12270 (17)0.0753 (6)
O60.8814 (3)0.3620 (2)0.07874 (16)0.0652 (5)
O70.9370 (3)0.1160 (2)0.11921 (17)0.0757 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.03248 (17)0.03601 (17)0.03033 (16)−0.01101 (12)−0.01119 (11)0.00581 (11)
O10.0452 (10)0.0571 (11)0.0506 (10)−0.0154 (8)−0.0172 (8)−0.0019 (9)
O20.0396 (9)0.0392 (9)0.0400 (9)−0.0051 (7)−0.0130 (7)0.0092 (7)
O30.0633 (12)0.0395 (10)0.0524 (10)−0.0135 (9)0.0016 (9)0.0073 (8)
N10.0376 (10)0.0365 (10)0.0333 (9)−0.0057 (8)−0.0090 (8)0.0003 (8)
N20.0423 (11)0.0382 (11)0.0351 (10)−0.0104 (9)−0.0028 (8)−0.0029 (8)
C10.0450 (15)0.0599 (17)0.0627 (17)−0.0026 (13)−0.0254 (13)−0.0138 (14)
C20.0554 (16)0.0417 (14)0.0545 (15)0.0006 (12)−0.0293 (13)−0.0036 (12)
C30.087 (2)0.059 (2)0.104 (3)0.0030 (18)−0.065 (2)0.0011 (19)
C40.133 (3)0.053 (2)0.109 (3)−0.004 (2)−0.084 (3)0.0223 (19)
C50.116 (3)0.0403 (16)0.0610 (18)−0.0093 (17)−0.0372 (18)0.0122 (13)
C60.0663 (17)0.0351 (13)0.0367 (12)−0.0047 (12)−0.0126 (12)0.0014 (10)
C70.0525 (14)0.0325 (12)0.0317 (11)0.0029 (11)−0.0144 (10)−0.0039 (9)
C80.090 (2)0.0397 (15)0.0617 (18)−0.0221 (15)0.0168 (16)0.0003 (13)
C90.0405 (13)0.0436 (14)0.0427 (13)−0.0110 (11)−0.0101 (10)0.0012 (11)
C100.0427 (14)0.0594 (17)0.0530 (15)−0.0150 (13)−0.0107 (12)−0.0059 (13)
C110.0469 (15)0.0707 (19)0.0503 (15)−0.0073 (14)−0.0226 (12)−0.0046 (14)
C120.0531 (15)0.0616 (17)0.0414 (14)−0.0082 (13)−0.0201 (12)0.0045 (12)
C130.0421 (13)0.0389 (12)0.0320 (11)−0.0016 (10)−0.0085 (10)−0.0009 (10)
C140.0454 (14)0.0381 (13)0.0330 (11)−0.0040 (11)−0.0050 (10)−0.0019 (10)
C150.0692 (18)0.0561 (17)0.0394 (14)−0.0127 (14)−0.0074 (13)0.0109 (12)
C160.082 (2)0.0588 (18)0.0454 (15)−0.0230 (16)0.0032 (15)0.0125 (13)
C170.0655 (19)0.0593 (18)0.0523 (16)−0.0256 (15)0.0086 (14)−0.0028 (14)
C180.0479 (14)0.0509 (15)0.0484 (14)−0.0199 (12)−0.0002 (11)−0.0046 (12)
Cl0.0437 (3)0.0428 (3)0.0378 (3)−0.0086 (3)−0.0106 (2)0.0041 (2)
O40.0798 (13)0.0620 (12)0.0386 (9)−0.0123 (10)−0.0148 (9)0.0014 (9)
O50.0592 (12)0.1022 (17)0.0741 (14)−0.0325 (12)−0.0310 (10)0.0178 (12)
O60.0829 (14)0.0616 (12)0.0546 (11)−0.0305 (11)−0.0136 (10)0.0177 (9)
O70.0816 (15)0.0588 (13)0.0725 (14)0.0163 (11)0.0001 (11)−0.0044 (11)

Geometric parameters (Å, °)

Ni1—O21.8932 (15)C8—H8B0.9600
Ni1—O11.9580 (16)C8—H8C0.9600
Ni1—N21.9783 (19)C9—C101.374 (3)
Ni1—N11.9828 (18)C9—H90.9300
O1—C11.255 (3)C10—C111.370 (3)
O2—C71.310 (3)C10—H100.9300
O3—C61.351 (3)C11—C121.379 (4)
O3—C81.439 (3)C11—H110.9300
N1—C91.339 (3)C12—C131.384 (3)
N1—C131.349 (3)C12—H120.9300
N2—C181.343 (3)C13—C141.476 (3)
N2—C141.346 (3)C14—C151.386 (3)
C1—C21.412 (4)C15—C161.374 (4)
C1—H10.9300C15—H150.9300
C2—C71.410 (3)C16—C171.359 (4)
C2—C31.421 (4)C16—H160.9300
C3—C41.348 (5)C17—C181.374 (3)
C3—H30.9300C17—H170.9300
C4—C51.388 (5)C18—H180.9300
C4—H40.9300Cl—O71.4194 (19)
C5—C61.378 (4)Cl—O51.4284 (19)
C5—H50.9300Cl—O61.4336 (18)
C6—C71.425 (3)Cl—O41.4418 (17)
C8—H8A0.9600
O2—Ni1—O192.24 (7)O3—C8—H8C109.5
O2—Ni1—N2171.66 (7)H8A—C8—H8C109.5
O1—Ni1—N294.93 (7)H8B—C8—H8C109.5
O2—Ni1—N191.43 (7)N1—C9—C10122.1 (2)
O1—Ni1—N1174.35 (7)N1—C9—H9119.0
N2—Ni1—N181.75 (8)C10—C9—H9119.0
C1—O1—Ni1122.66 (17)C11—C10—C9119.0 (2)
C7—O2—Ni1125.39 (15)C11—C10—H10120.5
C6—O3—C8116.8 (2)C9—C10—H10120.5
C9—N1—C13119.0 (2)C10—C11—C12119.7 (2)
C9—N1—Ni1126.47 (15)C10—C11—H11120.1
C13—N1—Ni1114.47 (15)C12—C11—H11120.1
C18—N2—C14118.7 (2)C11—C12—C13118.7 (2)
C18—N2—Ni1126.43 (17)C11—C12—H12120.7
C14—N2—Ni1114.84 (15)C13—C12—H12120.7
O1—C1—C2128.7 (2)N1—C13—C12121.5 (2)
O1—C1—H1115.7N1—C13—C14114.52 (19)
C2—C1—H1115.7C12—C13—C14124.0 (2)
C7—C2—C1121.7 (2)N2—C14—C15121.0 (2)
C7—C2—C3119.4 (3)N2—C14—C13114.38 (19)
C1—C2—C3119.0 (3)C15—C14—C13124.6 (2)
C4—C3—C2121.0 (3)C16—C15—C14119.1 (3)
C4—C3—H3119.5C16—C15—H15120.4
C2—C3—H3119.5C14—C15—H15120.4
C3—C4—C5120.2 (3)C17—C16—C15119.9 (3)
C3—C4—H4119.9C17—C16—H16120.0
C5—C4—H4119.9C15—C16—H16120.0
C6—C5—C4121.3 (3)C16—C17—C18118.8 (3)
C6—C5—H5119.4C16—C17—H17120.6
C4—C5—H5119.4C18—C17—H17120.6
O3—C6—C5126.1 (3)N2—C18—C17122.4 (3)
O3—C6—C7114.1 (2)N2—C18—H18118.8
C5—C6—C7119.8 (3)C17—C18—H18118.8
O2—C7—C2123.6 (2)O7—Cl—O5109.87 (14)
O2—C7—C6118.2 (2)O7—Cl—O6110.45 (13)
C2—C7—C6118.3 (2)O5—Cl—O6109.20 (12)
O3—C8—H8A109.5O7—Cl—O4109.12 (12)
O3—C8—H8B109.5O5—Cl—O4108.41 (12)
H8A—C8—H8B109.5O6—Cl—O4109.75 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O7i0.932.583.461 (4)159
C12—H12···O5ii0.932.573.499 (3)177
C15—H15···O5ii0.932.593.517 (3)171

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2410).

References

  • Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem.73, 915–925.
  • Bruker (2004). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164–169.
  • Liu, W. L., Ye, L. F., Liu, X. F., Yuan, L. M., Jiang, J. X. & Yan, C. G. (2008). CrystEngComm, 10, 1395–1403.
  • Minuti, L., Taticchi, A., Marrocchi, A., Gacs-Baitz, E. & Galeazzi, R. (1999). Eur. J. Org. Chem. pp. 3155–3163.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography