PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o6.
Published online 2008 December 3. doi:  10.1107/S1600536808039627
PMCID: PMC2967858

N-(4,5-Diaza­fluoren-9-yl­idene)-4-methyl­aniline

Abstract

In the mol­ecule of the title compound, C18H13N3, the 4,5-diaza­fluorenyl­idene unit is nearly planar and is oriented at a dihedral angle of 66.31 (1)° with respect to the benzene ring. In the crystal structure, mol­ecules are stacked regularly along the c axis.

Related literature

For the photochemical properties of 4-methyl-N-(4,5-diaza­fluorenyl­idene)benzenamine, see: Wang & Rillema (1997 [triangle]). For related structures, see: Glagovich et al. (2004a [triangle],b [triangle]); Peters et al. (1998 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-000o6-scheme1.jpg

Experimental

Crystal data

  • C18H13N3
  • M r = 271.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-000o6-efi1.jpg
  • a = 7.5970 (15) Å
  • b = 8.6100 (17) Å
  • c = 10.998 (2) Å
  • α = 77.11 (3)°
  • β = 87.48 (3)°
  • γ = 85.79 (3)°
  • V = 699.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.977, T max = 0.985
  • 2742 measured reflections
  • 2534 independent reflections
  • 1829 reflections with I > 2σ(I)
  • R int = 0.025
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.167
  • S = 1.00
  • 2534 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039627/bx2187sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039627/bx2187Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

4-Methyl-N-(4,5-diazafluorenylidene)benzenamine, is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). The crystal structure of 4-methyl-N-(4,5-diazafluorenylidene)benzenamine monohydrate, (II) (Wang et al., 2006) was reported, previously. We report herein the crystal structure of the title compound, (I), Fig. 1.The bond lengths and angles are comparable with the solvated form (II), and with other fluorenylidene compounds : N-fluorenylidene-aniline-benzene (4/1) (III) (Peters et al., 1998), N-(9H-fluoren-9-ylidene)-N-(4-methoxyphenyl)amine, (IV) (Glagovich et al., 2004a) and N-9H-fluoren-9-ylidene-3,4-dimethyl- aniline, (V) (Glagovich et al., 2004b). The coplanar ring system is oriented with respect to benzene ring at a dihedral angle of 66.31 (1)°.In the crystal of the title compound, no obvious hydrogen bond is observed, and molecules are stacked regularly along c axis, Fig. 2.

Experimental

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). The crystals were obtained by dissolving compound (I) (2.0 g, 6.3 mmol) into solution of acetic ether (50 ml, 1.0 mol/L), and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.
A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I).

Crystal data

C18H13N3Z = 2
Mr = 271.31F(000) = 284
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5970 (15) ÅCell parameters from 25 reflections
b = 8.6100 (17) Åθ = 10–13°
c = 10.998 (2) ŵ = 0.08 mm1
α = 77.11 (3)°T = 293 K
β = 87.48 (3)°Plate, yellow
γ = 85.79 (3)°0.30 × 0.20 × 0.20 mm
V = 699.1 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer1829 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = −9→9
Absorption correction: ψ scan (North et al., 1968)k = −9→10
Tmin = 0.977, Tmax = 0.985l = 0→13
2742 measured reflections3 standard reflections every 200 reflections
2534 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.05P)2 + 0.85P] where P = (Fo2 + 2Fc2)/3
2534 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2577 (3)1.3579 (3)0.5598 (2)0.0539 (7)
C10.0220 (6)1.2134 (6)1.0717 (3)0.0953 (14)
H1B−0.08981.27051.07940.143*
H1C0.10631.24571.12230.143*
H1D0.00911.10081.09920.143*
N20.2970 (3)0.8734 (3)0.3984 (2)0.0507 (6)
C20.0855 (5)1.2499 (5)0.9378 (3)0.0658 (9)
N30.4535 (3)1.1454 (3)0.2071 (2)0.0526 (6)
C30.2450 (4)1.1836 (4)0.8993 (3)0.0584 (8)
H3B0.31521.11560.95830.070*
C40.3018 (4)1.2158 (4)0.7759 (3)0.0551 (8)
H4A0.40941.17030.75280.066*
C50.1987 (4)1.3158 (3)0.6866 (3)0.0501 (7)
C60.0411 (4)1.3877 (4)0.7236 (3)0.0602 (8)
H6A−0.02681.45900.66500.072*
C7−0.0137 (5)1.3531 (5)0.8469 (3)0.0723 (10)
H7A−0.12031.40020.87010.087*
C80.2867 (4)1.2521 (3)0.4951 (2)0.0432 (6)
C90.2518 (3)1.0803 (3)0.5183 (2)0.0398 (6)
C100.1712 (4)0.9757 (3)0.6156 (3)0.0463 (7)
H10A0.12791.00860.68680.056*
C110.1576 (4)0.8219 (4)0.6030 (3)0.0490 (7)
H11A0.10440.74850.66630.059*
C120.2236 (4)0.7763 (4)0.4952 (3)0.0537 (8)
H12A0.21570.67050.49070.064*
C130.3085 (3)1.0227 (3)0.4114 (2)0.0421 (6)
C140.3829 (3)1.1547 (3)0.3185 (2)0.0429 (6)
C150.5163 (4)1.2817 (4)0.1427 (3)0.0586 (8)
H15A0.56701.28200.06410.070*
C160.5114 (4)1.4213 (4)0.1839 (3)0.0617 (9)
H16A0.55901.51110.13380.074*
C170.4364 (4)1.4296 (4)0.2994 (3)0.0545 (8)
H17A0.43171.52280.32920.065*
C180.3691 (4)1.2917 (3)0.3673 (2)0.0457 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0653 (17)0.0495 (14)0.0480 (14)0.0060 (12)0.0035 (12)−0.0170 (11)
C10.086 (3)0.149 (4)0.054 (2)−0.014 (3)0.016 (2)−0.029 (2)
N20.0502 (15)0.0541 (15)0.0501 (14)0.0092 (11)−0.0023 (11)−0.0200 (12)
C20.058 (2)0.097 (3)0.0483 (18)−0.0093 (18)0.0060 (16)−0.0284 (18)
N30.0500 (15)0.0690 (17)0.0361 (13)0.0112 (12)−0.0010 (11)−0.0111 (12)
C30.059 (2)0.072 (2)0.0459 (17)0.0002 (16)−0.0022 (14)−0.0174 (15)
C40.0563 (19)0.0615 (19)0.0507 (18)0.0054 (15)0.0036 (14)−0.0233 (15)
C50.0569 (18)0.0489 (16)0.0487 (17)0.0000 (13)0.0049 (14)−0.0220 (13)
C60.0562 (19)0.068 (2)0.057 (2)0.0105 (15)0.0007 (15)−0.0220 (16)
C70.055 (2)0.106 (3)0.060 (2)0.0086 (19)0.0085 (17)−0.036 (2)
C80.0416 (15)0.0473 (15)0.0401 (15)0.0086 (12)−0.0030 (12)−0.0117 (12)
C90.0340 (14)0.0480 (15)0.0382 (14)0.0065 (11)−0.0050 (11)−0.0135 (12)
C100.0424 (15)0.0585 (18)0.0401 (15)0.0051 (13)−0.0046 (12)−0.0171 (13)
C110.0469 (17)0.0540 (18)0.0452 (16)0.0011 (13)−0.0054 (13)−0.0096 (13)
C120.0573 (19)0.0476 (17)0.0589 (19)0.0029 (14)−0.0046 (15)−0.0186 (15)
C130.0368 (15)0.0523 (16)0.0375 (14)0.0120 (12)−0.0069 (11)−0.0142 (12)
C140.0348 (14)0.0567 (17)0.0363 (14)0.0108 (12)−0.0068 (11)−0.0116 (12)
C150.0571 (19)0.081 (2)0.0335 (15)0.0107 (17)0.0004 (13)−0.0087 (15)
C160.062 (2)0.074 (2)0.0424 (17)0.0018 (16)−0.0010 (15)−0.0003 (15)
C170.0590 (19)0.0542 (18)0.0468 (17)0.0046 (14)−0.0015 (14)−0.0062 (14)
C180.0436 (16)0.0542 (17)0.0366 (14)0.0103 (12)−0.0056 (12)−0.0078 (12)

Geometric parameters (Å, °)

N1—C81.277 (3)C7—H7A0.9300
N1—C51.422 (4)C8—C91.486 (4)
C1—C21.501 (5)C8—C181.491 (4)
C1—H1B0.9600C9—C101.387 (4)
C1—H1C0.9600C9—C131.414 (4)
C1—H1D0.9600C10—C111.373 (4)
N2—C121.327 (4)C10—H10A0.9300
N2—C131.334 (4)C11—C121.392 (4)
C2—C71.388 (5)C11—H11A0.9300
C2—C31.391 (5)C12—H12A0.9300
N3—C141.332 (3)C13—C141.477 (4)
N3—C151.337 (4)C14—C181.397 (4)
C3—C41.380 (4)C15—C161.374 (5)
C3—H3B0.9300C15—H15A0.9300
C4—C51.382 (4)C16—C171.383 (4)
C4—H4A0.9300C16—H16A0.9300
C5—C61.394 (4)C17—C181.375 (4)
C6—C71.374 (4)C17—H17A0.9300
C6—H6A0.9300
C8—N1—C5121.0 (3)C10—C9—C13117.7 (3)
C2—C1—H1B109.5C10—C9—C8133.8 (2)
C2—C1—H1C109.5C13—C9—C8108.3 (2)
H1B—C1—H1C109.5C11—C10—C9117.7 (3)
C2—C1—H1D109.5C11—C10—H10A121.2
H1B—C1—H1D109.5C9—C10—H10A121.2
H1C—C1—H1D109.5C10—C11—C12119.8 (3)
C12—N2—C13115.1 (2)C10—C11—H11A120.1
C7—C2—C3117.2 (3)C12—C11—H11A120.1
C7—C2—C1120.8 (3)N2—C12—C11124.6 (3)
C3—C2—C1122.0 (4)N2—C12—H12A117.7
C14—N3—C15114.0 (3)C11—C12—H12A117.7
C4—C3—C2121.8 (3)N2—C13—C9125.1 (3)
C4—C3—H3B119.1N2—C13—C14126.4 (2)
C2—C3—H3B119.1C9—C13—C14108.5 (2)
C3—C4—C5119.9 (3)N3—C14—C18125.3 (3)
C3—C4—H4A120.0N3—C14—C13126.1 (3)
C5—C4—H4A120.0C18—C14—C13108.6 (2)
C4—C5—C6119.2 (3)N3—C15—C16124.8 (3)
C4—C5—N1121.3 (3)N3—C15—H15A117.6
C6—C5—N1119.3 (3)C16—C15—H15A117.6
C7—C6—C5119.9 (3)C15—C16—C17120.6 (3)
C7—C6—H6A120.1C15—C16—H16A119.7
C5—C6—H6A120.1C17—C16—H16A119.7
C6—C7—C2121.9 (3)C18—C17—C16115.9 (3)
C6—C7—H7A119.1C18—C17—H17A122.0
C2—C7—H7A119.1C16—C17—H17A122.0
N1—C8—C9133.1 (3)C17—C18—C14119.4 (3)
N1—C8—C18121.3 (3)C17—C18—C8131.6 (3)
C9—C8—C18105.6 (2)C14—C18—C8108.9 (2)
C7—C2—C3—C4−1.2 (5)C12—N2—C13—C14−179.6 (3)
C1—C2—C3—C4179.2 (3)C10—C9—C13—N2−2.8 (4)
C2—C3—C4—C5−0.4 (5)C8—C9—C13—N2−179.6 (2)
C3—C4—C5—C62.5 (5)C10—C9—C13—C14177.7 (2)
C3—C4—C5—N1176.7 (3)C8—C9—C13—C140.8 (3)
C8—N1—C5—C463.1 (4)C15—N3—C14—C181.2 (4)
C8—N1—C5—C6−122.7 (3)C15—N3—C14—C13−178.0 (3)
C4—C5—C6—C7−2.9 (5)N2—C13—C14—N3−1.2 (4)
N1—C5—C6—C7−177.3 (3)C9—C13—C14—N3178.4 (2)
C5—C6—C7—C21.3 (6)N2—C13—C14—C18179.5 (3)
C3—C2—C7—C60.7 (6)C9—C13—C14—C18−1.0 (3)
C1—C2—C7—C6−179.7 (4)C14—N3—C15—C160.0 (4)
C5—N1—C8—C98.7 (5)N3—C15—C16—C17−0.6 (5)
C5—N1—C8—C18−172.5 (3)C15—C16—C17—C18−0.1 (4)
N1—C8—C9—C102.4 (5)C16—C17—C18—C141.2 (4)
C18—C8—C9—C10−176.5 (3)C16—C17—C18—C8177.0 (3)
N1—C8—C9—C13178.6 (3)N3—C14—C18—C17−1.9 (4)
C18—C8—C9—C13−0.3 (3)C13—C14—C18—C17177.4 (2)
C13—C9—C10—C112.2 (4)N3—C14—C18—C8−178.6 (2)
C8—C9—C10—C11178.1 (3)C13—C14—C18—C80.7 (3)
C9—C10—C11—C120.0 (4)N1—C8—C18—C174.5 (5)
C13—N2—C12—C111.5 (4)C9—C8—C18—C17−176.4 (3)
C10—C11—C12—N2−2.0 (5)N1—C8—C18—C14−179.3 (3)
C12—N2—C13—C90.9 (4)C9—C8—C18—C14−0.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2187).

References

  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o623–o625.
  • Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269–o1270.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Peters, K., Peters, E. M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct.213, 607–608.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390.
  • Wang, C. X., Wang, P. & Li, Z. F. (2006). Z. Kristallogr. New Cryst. Struct.221, 211–212.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography