PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o5.
Published online 2008 December 3. doi:  10.1107/S1600536808039986
PMCID: PMC2967857

2-Amino-4-(2-chloro­phen­yl)-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromene-3-carbonitrile

Abstract

In the mol­ecule of the title compound, C20H11ClN2O3, the pyran ring adopts a flattened-boat conformation. In the crystal structure, inter­molecular N—H(...)N and N—H(...)O hydrogen bonds generate edge-fused R 2 2(12) and R 2 2(14) ring motifs; the hydrogen-bonded motifs are linked to each other, forming a three-dimensional network. A π–π contact [centroid-to-centroid distance = 3.879 (3) Å] between the chloro­phenyl rings may further stabilize the structure.

Related literature

For background to the biological activity of pyran and naphthoquinone compounds, see: El-Agrody et al. (2000 [triangle]); Mohr et al. (1975 [triangle]); Banzatti et al. (1984 [triangle]); Hatakeyama et al. (1988 [triangle]); Tandon et al. (1991 [triangle]); Kongkathip et al. (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-000o5-scheme1.jpg

Experimental

Crystal data

  • C20H11ClN2O3
  • M r = 362.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-000o5-efi1.jpg
  • a = 8.3201 (10) Å
  • b = 9.3729 (12) Å
  • c = 11.0081 (16) Å
  • α = 93.015 (1)°
  • β = 96.393 (1)°
  • γ = 110.732 (2)°
  • V = 793.95 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 298 (2) K
  • 0.17 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.956, T max = 0.974
  • 4207 measured reflections
  • 2746 independent reflections
  • 1566 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.100
  • S = 1.04
  • 2746 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039986/hk2585sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039986/hk2585Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) and the Foundation of Xuzhou Medical College (grant No. 08KJ50) for support.

supplementary crystallographic information

Comment

Pyrans and their derivatives are important compounds, which are found to possess antibacterial (El-Agrody et al., 2000) and antitumor (Mohr et al., 1975) activities and antiallergic (Banzatti et al., 1984; Hatakeyama et al., 1988) and hypotensive (Tandon et al., 1991) effects. Compounds of 1,4-naphthoquinone series possess potent and versatile biological activities, such as antiallergic and anticancer activities (Kongkathip et al., 2003). For these reasons, 1,4-pyranonaphthoquinone derivatives possessing both pyran ring and 1,4-naphthoquinone motif are strongly desired. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings B (C4-C6/C11-C13), C (C6-C11) and D (C15-C20) are, of course, planar and the dihedral angles between them are B/C = 1.33 (3)°, B/D = 83.55 (3)° and C/D = 82.65 (3)°. So, rings B and C are nearly coplanar. Ring A (O1/C1-C4/C13) is not planar, having total puckering amplitude, QT, of 0.172 (3) and flattened-boat conformation [[var phi] = -22.99 (3)° and θ = 105.077 (4)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···N and N-H···O hydrogen bonds (Table 1) generate edge-fused R22(12) and R22(14) ring motifs (Fig. 2) (Bernstein et al., 1995). The hydrogen bonded motifs are linked to each other to form a three dimensional network, in which they may be effective in the stabilization of the structure. The π-π contact between the chlorophenyl rings, Cg4—Cg4i [symmetry code: (i) -x, -y, 2 - z, where Cg4 is centroid of the ring D (C15-C20)] may further stabilize the structure, with centroid-centroid distance of 3.879 (3) Å.

Experimental

The title compound was prepared by the reaction of 2-(2-chlorobenzylidene)- malononitrile (1 mmol) and 2-hydroxynaphthalene-1,4-dione (1 mmol) in glacial acetic acid without catalyst. Crystals suitable for X-ray analysis were obtained by slow evaporation of an aqueous ethanol solution (95%) (yield; 90%; m.p. > 573 K).

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H11ClN2O3Z = 2
Mr = 362.76F(000) = 372
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 8.3201 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3729 (12) ÅCell parameters from 959 reflections
c = 11.0081 (16) Åθ = 2.8–25.1°
α = 93.015 (1)°µ = 0.27 mm1
β = 96.393 (1)°T = 298 K
γ = 110.732 (2)°Block, orange
V = 793.95 (18) Å30.17 × 0.15 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer2746 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.956, Tmax = 0.974k = −11→10
4207 measured reflectionsl = −13→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0295P)2] where P = (Fo2 + 2Fc2)/3
2746 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.01619 (12)0.04001 (10)0.69113 (9)0.0587 (3)
O10.1440 (3)0.3890 (2)0.6133 (2)0.0405 (6)
O20.5886 (3)0.2063 (3)0.7464 (2)0.0541 (7)
O30.2251 (3)0.3753 (3)0.3898 (2)0.0536 (7)
N1−0.0034 (3)0.4822 (3)0.7313 (2)0.0471 (8)
H1A−0.03040.50990.79940.057*
H1B−0.05560.49360.66260.057*
N20.1921 (4)0.4871 (4)1.0491 (3)0.0578 (9)
C10.1196 (4)0.4216 (3)0.7320 (3)0.0369 (8)
C20.2135 (4)0.3957 (3)0.8299 (3)0.0344 (8)
C30.3297 (4)0.3028 (3)0.8197 (3)0.0336 (8)
H30.44120.36220.86960.040*
C40.3646 (4)0.2940 (3)0.6883 (3)0.0309 (8)
C50.5061 (4)0.2424 (3)0.6626 (3)0.0360 (8)
C60.5448 (4)0.2361 (3)0.5342 (3)0.0339 (8)
C70.6774 (4)0.1889 (4)0.5076 (3)0.0466 (9)
H70.74160.16040.56990.056*
C80.7152 (5)0.1837 (4)0.3890 (3)0.0538 (10)
H80.80640.15400.37180.065*
C90.6180 (4)0.2225 (4)0.2961 (3)0.0530 (10)
H90.64260.21700.21600.064*
C100.4851 (4)0.2690 (4)0.3207 (3)0.0461 (9)
H100.42020.29510.25740.055*
C110.4476 (4)0.2770 (3)0.4401 (3)0.0346 (8)
C120.3083 (4)0.3326 (3)0.4679 (3)0.0350 (8)
C130.2762 (4)0.3374 (3)0.5983 (3)0.0337 (8)
C140.1989 (4)0.4470 (4)0.9505 (3)0.0405 (9)
C150.2617 (4)0.1487 (3)0.8721 (3)0.0322 (8)
C160.1126 (4)0.0269 (4)0.8235 (3)0.0374 (9)
C170.0573 (4)−0.1101 (4)0.8767 (3)0.0450 (9)
H17−0.0427−0.19030.84120.054*
C180.1515 (5)−0.1260 (4)0.9819 (3)0.0538 (10)
H180.1157−0.21771.01790.065*
C190.2985 (5)−0.0068 (4)1.0343 (3)0.0514 (10)
H190.3613−0.01721.10650.062*
C200.3530 (4)0.1287 (4)0.9798 (3)0.0433 (9)
H200.45320.20841.01580.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0512 (6)0.0542 (6)0.0649 (7)0.0171 (4)−0.0099 (5)0.0082 (5)
O10.0409 (14)0.0529 (14)0.0391 (14)0.0302 (12)0.0069 (11)0.0067 (12)
O20.0534 (16)0.0759 (17)0.0500 (16)0.0423 (14)0.0080 (13)0.0191 (14)
O30.0643 (17)0.0733 (17)0.0398 (15)0.0459 (14)0.0020 (13)0.0114 (13)
N10.0525 (19)0.0636 (19)0.0407 (18)0.0403 (16)0.0056 (15)0.0031 (16)
N20.065 (2)0.066 (2)0.046 (2)0.0297 (18)0.0090 (18)−0.0059 (18)
C10.037 (2)0.0340 (19)0.044 (2)0.0177 (16)0.0102 (18)0.0047 (17)
C20.037 (2)0.0356 (19)0.035 (2)0.0183 (16)0.0072 (17)0.0027 (17)
C30.0340 (19)0.0366 (19)0.033 (2)0.0165 (15)0.0015 (16)0.0036 (17)
C40.0328 (19)0.0285 (17)0.034 (2)0.0135 (15)0.0057 (16)0.0044 (16)
C50.0319 (19)0.0350 (19)0.044 (2)0.0162 (16)0.0015 (18)0.0081 (18)
C60.033 (2)0.0334 (18)0.036 (2)0.0121 (15)0.0061 (17)0.0041 (17)
C70.043 (2)0.053 (2)0.054 (3)0.0278 (18)0.0078 (19)0.008 (2)
C80.049 (2)0.065 (3)0.055 (3)0.028 (2)0.016 (2)−0.002 (2)
C90.051 (2)0.065 (3)0.044 (2)0.021 (2)0.010 (2)−0.001 (2)
C100.043 (2)0.054 (2)0.044 (2)0.0207 (18)0.0074 (19)0.003 (2)
C110.035 (2)0.0324 (19)0.035 (2)0.0108 (15)0.0047 (17)−0.0009 (17)
C120.035 (2)0.0325 (19)0.039 (2)0.0132 (15)0.0047 (17)0.0037 (17)
C130.0346 (19)0.0297 (18)0.040 (2)0.0158 (15)0.0061 (17)0.0012 (17)
C140.039 (2)0.037 (2)0.048 (2)0.0164 (16)0.0055 (19)0.008 (2)
C150.0331 (19)0.0377 (19)0.0338 (19)0.0207 (16)0.0098 (16)0.0064 (17)
C160.036 (2)0.042 (2)0.042 (2)0.0234 (16)0.0058 (17)0.0035 (18)
C170.041 (2)0.036 (2)0.062 (3)0.0163 (16)0.0148 (19)0.0048 (19)
C180.062 (3)0.050 (2)0.063 (3)0.031 (2)0.021 (2)0.023 (2)
C190.059 (3)0.059 (3)0.046 (2)0.032 (2)0.009 (2)0.015 (2)
C200.045 (2)0.047 (2)0.040 (2)0.0190 (17)0.0035 (18)0.0086 (18)

Geometric parameters (Å, °)

Cl1—C161.747 (3)C7—C81.379 (5)
O1—C11.380 (4)C7—H70.9300
O1—C131.370 (3)C8—C91.377 (4)
O2—C51.223 (3)C8—H80.9300
O3—C121.216 (3)C9—C101.372 (4)
N1—C11.334 (3)C9—H90.9300
N1—H1A0.8600C10—C111.389 (4)
N1—H1B0.8600C10—H100.9300
N2—C141.144 (4)C11—C121.482 (4)
C1—C21.343 (4)C12—C131.490 (4)
C2—C141.420 (5)C15—C161.383 (4)
C2—C31.522 (4)C15—C201.393 (4)
C3—C41.510 (4)C16—C171.387 (4)
C3—C151.524 (4)C17—C181.370 (4)
C3—H30.9800C17—H170.9300
C4—C131.335 (4)C18—C191.373 (4)
C4—C51.470 (4)C18—H180.9300
C5—C61.487 (4)C19—C201.383 (4)
C6—C71.380 (4)C19—H190.9300
C6—C111.396 (4)C20—H200.9300
C13—O1—C1117.4 (2)C8—C9—H9119.7
C1—N1—H1A120.0C9—C10—C11120.0 (3)
C1—N1—H1B120.0C9—C10—H10120.0
H1A—N1—H1B120.0C11—C10—H10120.0
N1—C1—C2127.8 (3)C10—C11—C6119.6 (3)
N1—C1—O1110.1 (3)C10—C11—C12120.2 (3)
C2—C1—O1122.1 (3)C6—C11—C12120.2 (3)
C1—C2—C14120.4 (3)O3—C12—C11122.6 (3)
C1—C2—C3122.9 (3)O3—C12—C13120.7 (3)
C14—C2—C3116.6 (3)C11—C12—C13116.8 (3)
C4—C3—C2108.4 (2)C4—C13—O1124.6 (3)
C4—C3—C15114.8 (2)C4—C13—C12123.5 (3)
C2—C3—C15113.2 (3)O1—C13—C12111.9 (3)
C4—C3—H3106.6N2—C14—C2177.6 (4)
C2—C3—H3106.6C16—C15—C20116.6 (3)
C15—C3—H3106.6C16—C15—C3125.4 (3)
C13—C4—C5120.3 (3)C20—C15—C3118.0 (3)
C13—C4—C3121.8 (3)C15—C16—C17122.3 (3)
C5—C4—C3117.8 (3)C15—C16—Cl1120.9 (2)
O2—C5—C4119.6 (3)C17—C16—Cl1116.8 (3)
O2—C5—C6121.8 (3)C18—C17—C16119.4 (3)
C4—C5—C6118.6 (3)C18—C17—H17120.3
C7—C6—C11119.7 (3)C16—C17—H17120.3
C7—C6—C5119.8 (3)C17—C18—C19120.1 (3)
C11—C6—C5120.6 (3)C17—C18—H18120.0
C8—C7—C6120.2 (3)C19—C18—H18120.0
C8—C7—H7119.9C18—C19—C20119.9 (3)
C6—C7—H7119.9C18—C19—H19120.0
C9—C8—C7120.0 (4)C20—C19—H19120.0
C9—C8—H8120.0C19—C20—C15121.6 (3)
C7—C8—H8120.0C19—C20—H20119.2
C10—C9—C8120.5 (4)C15—C20—H20119.2
C10—C9—H9119.7
C13—O1—C1—N1174.8 (2)C7—C6—C11—C12−178.1 (3)
C13—O1—C1—C2−3.9 (4)C5—C6—C11—C122.1 (4)
N1—C1—C2—C14−5.9 (6)C10—C11—C12—O3−1.4 (5)
O1—C1—C2—C14172.6 (3)C6—C11—C12—O3177.0 (3)
N1—C1—C2—C3169.9 (3)C10—C11—C12—C13179.9 (3)
O1—C1—C2—C3−11.5 (5)C6—C11—C12—C13−1.7 (4)
C1—C2—C3—C418.2 (4)C5—C4—C13—O1−179.1 (3)
C14—C2—C3—C4−165.8 (3)C3—C4—C13—O1−2.0 (5)
C1—C2—C3—C15−110.3 (4)C5—C4—C13—C122.0 (5)
C14—C2—C3—C1565.6 (4)C3—C4—C13—C12179.1 (3)
C2—C3—C4—C13−11.5 (4)C1—O1—C13—C411.0 (4)
C15—C3—C4—C13116.1 (3)C1—O1—C13—C12−170.1 (3)
C2—C3—C4—C5165.6 (3)O3—C12—C13—C4−179.1 (3)
C15—C3—C4—C5−66.7 (3)C11—C12—C13—C4−0.4 (4)
C13—C4—C5—O2178.4 (3)O3—C12—C13—O11.9 (4)
C3—C4—C5—O21.1 (4)C11—C12—C13—O1−179.4 (2)
C13—C4—C5—C6−1.6 (4)C4—C3—C15—C16−57.8 (4)
C3—C4—C5—C6−178.8 (3)C2—C3—C15—C1667.4 (4)
O2—C5—C6—C7−0.2 (5)C4—C3—C15—C20124.2 (3)
C4—C5—C6—C7179.7 (3)C2—C3—C15—C20−110.6 (3)
O2—C5—C6—C11179.5 (3)C20—C15—C16—C17−1.4 (5)
C4—C5—C6—C11−0.6 (4)C3—C15—C16—C17−179.4 (3)
C11—C6—C7—C80.7 (5)C20—C15—C16—Cl1178.3 (2)
C5—C6—C7—C8−179.5 (3)C3—C15—C16—Cl10.2 (4)
C6—C7—C8—C9−1.4 (5)C15—C16—C17—C180.8 (5)
C7—C8—C9—C101.1 (5)Cl1—C16—C17—C18−178.8 (3)
C8—C9—C10—C11−0.1 (5)C16—C17—C18—C190.4 (5)
C9—C10—C11—C6−0.6 (5)C17—C18—C19—C20−1.0 (5)
C9—C10—C11—C12177.8 (3)C18—C19—C20—C150.4 (5)
C7—C6—C11—C100.3 (5)C16—C15—C20—C190.8 (5)
C5—C6—C11—C10−179.5 (3)C3—C15—C20—C19179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.263.080 (4)159
N1—H1B···O3ii0.862.222.889 (3)134

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2585).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Banzatti, C., Branzoli, U., Lovisolo, M. P., Melloni, P. & Salvador, P. (1984). Arzneim. Forsch.34, 864–869. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 155–1573.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • El-Agrody, A. M., El-Hakim, M. H., Abd El-Latif, M. S., Fakery, A. H., El-Sayed, E. S. M. & El-Ghareab, K. A. (2000). Acta Pharm.50, 111–120.
  • Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.
  • Kongkathip, N., Kongkathip, B., Siripong, P., Sangma, C., Luangkamin, S., Niyomdecha, M., Pattanapa, S., Piyaviriyagul, S. & Kongsaeree, P. (2003). Bioorg. Med. Chem.11, 3179–3191. [PubMed]
  • Mohr, S. J., Chirigos, M. A., Fuhrman, F. S. & Pryor, J. W. (1975). Cancer Res.35, 3750–3754. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tandon, V. K., Vaish, M., Jain, S., Bhakuni, D. S. & Srimal, R. C. (1991). Indian J. Pharm. Sci.53, 22–23.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography