PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o3.
Published online 2008 December 3. doi:  10.1107/S1600536808039937
PMCID: PMC2967855

Isopropyl 2-(5-chloro-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Abstract

In the title compound, C14H15ClO4S, the S atom has a distorted trigonal-pyramidal coordination. The O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the benzofuran ring system. The crystal structure is stabilized by intermolecular aromatic π–π interactions between the benzene rings of neighbouring molecules [centroid–centroid distance = 4.057 (3) Å], and by C—H(...)π interactions between a methyl H atom and the benzene ring of an adjacent molecule.

Related literature

For the crystal structures of similar compounds, see: Choi et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-000o3-scheme1.jpg

Experimental

Crystal data

  • C14H15ClO4S
  • M r = 314.77
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-000o3-efi1.jpg
  • a = 7.8824 (6) Å
  • b = 10.0352 (8) Å
  • c = 10.9004 (8) Å
  • α = 69.254 (1)°
  • β = 81.662 (1)°
  • γ = 67.703 (1)°
  • V = 745.98 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 298 (2) K
  • 0.50 × 0.40 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.816, T max = 0.939
  • 5508 measured reflections
  • 2602 independent reflections
  • 2354 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.124
  • S = 1.12
  • 2602 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039937/ng2521sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039937/ng2521Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our ongoing research on the synthesis and structure of isopropyl 2-(5-halo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have recently described the crystal structures of isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, isopropyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing is stabilized by aromatic π—π stacking interactions between the benzene rings of adjacent molecules. The Cg···Cgii distance is 4.057 (3) Å (Fig. 2; Cg is the centroid of C2—C7 benzene ring; symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between a methyl H atom of isoproyl group and the benzene ring of the benzofuran uint, with a C13—H13B···Cgi separation of 2.78 Å (Fig. 2 and Table 1; Cg is the centroid of the C2-C7 benzene ring).

Experimental

77% 3-chloroperoxybenzoic acid (173 mg, 0.77 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-chloro-3-methylsulfanyl-1-benzofuran-2-yl)acetate (209 mg, 0.7 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 422–423 K; Rf = 0.52 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.28 (d, J = 6.20 Hz, 6H), 3.08 (s, 3H), 4.0 (s, 2H), 5.02-5.08 (m, 1H), 7.35 (dd, J = 8.76 Hz and J = 1.84 Hz, 1H), 7.45 (d, J = 8.76 Hz, 1H), 7.95 (d, J = 1.84 Hz, 1H); EI-MS 316 [M+2], 314 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
π—π and C—H···π interactions (dotted lines) in the title compound. Cg denotes ring centroid.[Symmetry code: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z.]

Crystal data

C14H15ClO4SZ = 2
Mr = 314.77F(000) = 328
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Melting point = 422–423 K
a = 7.8824 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0352 (8) ÅCell parameters from 4167 reflections
c = 10.9004 (8) Åθ = 2.5–28.3°
α = 69.254 (1)°µ = 0.41 mm1
β = 81.662 (1)°T = 298 K
γ = 67.703 (1)°Plate, colorless
V = 745.98 (10) Å30.50 × 0.40 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer2602 independent reflections
Radiation source: fine-focus sealed tube2354 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.5°
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −11→11
Tmin = 0.816, Tmax = 0.939l = −12→12
5508 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.125H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0534P)2 + 0.4971P] where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.74726 (9)0.60225 (8)0.54010 (6)0.0480 (2)
Cl0.29574 (12)0.21443 (10)0.87346 (10)0.0816 (3)
O10.8348 (2)0.45903 (19)0.91914 (16)0.0435 (4)
O20.7488 (3)0.4832 (3)0.48756 (19)0.0637 (6)
O31.0254 (3)0.8446 (2)0.7284 (2)0.0582 (5)
O40.7414 (3)0.8557 (2)0.7070 (2)0.0674 (6)
C10.7475 (3)0.5246 (3)0.7125 (2)0.0393 (5)
C20.6447 (3)0.4337 (3)0.7973 (2)0.0378 (5)
C30.5137 (3)0.3799 (3)0.7797 (3)0.0462 (6)
H30.46860.40430.69720.055*
C40.4550 (4)0.2888 (3)0.8910 (3)0.0510 (7)
C50.5171 (4)0.2520 (3)1.0159 (3)0.0544 (7)
H50.47200.19051.08780.065*
C60.6450 (4)0.3061 (3)1.0341 (3)0.0486 (6)
H60.68780.28321.11700.058*
C70.7062 (3)0.3959 (3)0.9229 (2)0.0408 (5)
C80.8579 (3)0.5352 (3)0.7894 (2)0.0409 (5)
C90.9910 (3)0.6147 (3)0.7601 (3)0.0455 (6)
H9A1.06670.59470.68560.055*
H9B1.07080.57350.83470.055*
C100.9005 (4)0.7845 (3)0.7302 (2)0.0437 (6)
C110.9615 (5)1.0095 (3)0.7059 (4)0.0697 (9)
H110.85281.06420.65030.084*
C121.1212 (8)1.0569 (5)0.6388 (5)0.1199 (18)
H12A1.08561.16560.61420.180*
H12B1.15701.02670.56190.180*
H12C1.22261.00850.69790.180*
C130.9213 (8)1.0315 (4)0.8347 (5)0.1195 (19)
H13A0.82550.99380.87770.179*
H13B0.88251.13810.82330.179*
H13C1.02960.97700.88720.179*
C140.5183 (4)0.7385 (4)0.5211 (3)0.0671 (8)
H14A0.49770.79980.43040.101*
H14B0.50180.80270.57280.101*
H14C0.43270.68610.54990.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0489 (4)0.0589 (4)0.0385 (4)−0.0261 (3)−0.0038 (3)−0.0100 (3)
Cl0.0694 (5)0.0748 (6)0.1092 (7)−0.0480 (5)−0.0073 (5)−0.0132 (5)
O10.0486 (10)0.0464 (9)0.0398 (9)−0.0184 (8)−0.0057 (7)−0.0154 (7)
O20.0685 (13)0.0804 (14)0.0515 (12)−0.0250 (11)−0.0047 (9)−0.0322 (11)
O30.0622 (12)0.0429 (10)0.0740 (13)−0.0240 (9)−0.0176 (10)−0.0120 (9)
O40.0501 (12)0.0510 (11)0.0946 (16)−0.0161 (10)−0.0120 (11)−0.0139 (11)
C10.0427 (13)0.0388 (12)0.0383 (13)−0.0157 (10)−0.0035 (10)−0.0124 (10)
C20.0390 (12)0.0345 (12)0.0401 (13)−0.0113 (10)−0.0023 (10)−0.0134 (10)
C30.0438 (14)0.0438 (14)0.0532 (15)−0.0174 (11)−0.0051 (11)−0.0146 (12)
C40.0428 (14)0.0421 (14)0.0682 (18)−0.0179 (11)−0.0002 (12)−0.0153 (13)
C50.0541 (16)0.0437 (14)0.0553 (16)−0.0172 (13)0.0089 (13)−0.0084 (12)
C60.0509 (15)0.0428 (14)0.0432 (14)−0.0102 (12)0.0007 (11)−0.0111 (11)
C70.0404 (13)0.0353 (12)0.0457 (13)−0.0099 (10)−0.0016 (10)−0.0155 (10)
C80.0430 (13)0.0374 (12)0.0434 (13)−0.0130 (10)−0.0041 (10)−0.0145 (10)
C90.0443 (14)0.0476 (14)0.0509 (15)−0.0201 (11)−0.0050 (11)−0.0176 (12)
C100.0484 (15)0.0482 (14)0.0384 (13)−0.0223 (12)−0.0030 (11)−0.0121 (11)
C110.082 (2)0.0406 (15)0.085 (2)−0.0242 (15)−0.0304 (18)−0.0055 (15)
C120.181 (5)0.083 (3)0.115 (4)−0.086 (3)0.035 (3)−0.027 (3)
C130.159 (5)0.056 (2)0.121 (4)−0.018 (3)0.045 (3)−0.042 (2)
C140.0657 (19)0.0586 (18)0.0640 (19)−0.0112 (15)−0.0194 (15)−0.0095 (15)

Geometric parameters (Å, °)

S—O21.493 (2)C6—C71.378 (4)
S—C11.761 (2)C6—H60.9300
S—C141.790 (3)C8—C91.482 (3)
Cl—C41.747 (3)C9—C101.506 (4)
O1—C81.372 (3)C9—H9A0.9700
O1—C71.374 (3)C9—H9B0.9700
O3—C101.331 (3)C11—C131.469 (6)
O3—C111.472 (3)C11—C121.513 (6)
O4—C101.196 (3)C11—H110.9800
C1—C81.348 (3)C12—H12A0.9600
C1—C21.445 (3)C12—H12B0.9600
C2—C71.392 (3)C12—H12C0.9600
C2—C31.396 (3)C13—H13A0.9600
C3—C41.376 (4)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.390 (4)C14—H14A0.9600
C5—C61.378 (4)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O2—S—C1107.34 (12)C10—C9—H9A109.0
O2—S—C14106.36 (14)C8—C9—H9B109.0
C1—S—C1498.16 (14)C10—C9—H9B109.0
C8—O1—C7106.25 (18)H9A—C9—H9B107.8
C10—O3—C11117.8 (2)O4—C10—O3124.9 (2)
C8—C1—C2107.3 (2)O4—C10—C9125.3 (2)
C8—C1—S123.59 (19)O3—C10—C9109.8 (2)
C2—C1—S129.04 (18)C13—C11—O3107.5 (3)
C7—C2—C3119.7 (2)C13—C11—C12111.2 (4)
C7—C2—C1104.6 (2)O3—C11—C12104.8 (3)
C3—C2—C1135.7 (2)C13—C11—H11111.0
C4—C3—C2116.3 (2)O3—C11—H11111.0
C4—C3—H3121.8C12—C11—H11111.0
C2—C3—H3121.8C11—C12—H12A109.5
C3—C4—C5123.4 (2)C11—C12—H12B109.5
C3—C4—Cl118.1 (2)H12A—C12—H12B109.5
C5—C4—Cl118.5 (2)C11—C12—H12C109.5
C6—C5—C4120.5 (2)H12A—C12—H12C109.5
C6—C5—H5119.8H12B—C12—H12C109.5
C4—C5—H5119.8C11—C13—H13A109.5
C5—C6—C7116.4 (2)C11—C13—H13B109.5
C5—C6—H6121.8H13A—C13—H13B109.5
C7—C6—H6121.8C11—C13—H13C109.5
O1—C7—C6125.7 (2)H13A—C13—H13C109.5
O1—C7—C2110.7 (2)H13B—C13—H13C109.5
C6—C7—C2123.6 (2)S—C14—H14A109.5
C1—C8—O1111.2 (2)S—C14—H14B109.5
C1—C8—C9132.5 (2)H14A—C14—H14B109.5
O1—C8—C9116.3 (2)S—C14—H14C109.5
C8—C9—C10113.1 (2)H14A—C14—H14C109.5
C8—C9—H9A109.0H14B—C14—H14C109.5
O2—S—C1—C8133.8 (2)C3—C2—C7—O1179.7 (2)
C14—S—C1—C8−116.2 (2)C1—C2—C7—O10.9 (3)
O2—S—C1—C2−42.4 (3)C3—C2—C7—C60.1 (4)
C14—S—C1—C267.7 (3)C1—C2—C7—C6−178.6 (2)
C8—C1—C2—C7−0.3 (3)C2—C1—C8—O1−0.5 (3)
S—C1—C2—C7176.39 (19)S—C1—C8—O1−177.37 (16)
C8—C1—C2—C3−178.7 (3)C2—C1—C8—C9−178.7 (2)
S—C1—C2—C3−2.1 (4)S—C1—C8—C94.4 (4)
C7—C2—C3—C4−0.9 (4)C7—O1—C8—C11.1 (3)
C1—C2—C3—C4177.4 (3)C7—O1—C8—C9179.6 (2)
C2—C3—C4—C51.1 (4)C1—C8—C9—C1075.3 (4)
C2—C3—C4—Cl−178.30 (19)O1—C8—C9—C10−102.9 (2)
C3—C4—C5—C6−0.5 (4)C11—O3—C10—O44.8 (4)
Cl—C4—C5—C6178.9 (2)C11—O3—C10—C9−177.6 (2)
C4—C5—C6—C7−0.3 (4)C8—C9—C10—O4−13.6 (4)
C8—O1—C7—C6178.3 (2)C8—C9—C10—O3168.8 (2)
C8—O1—C7—C2−1.2 (3)C10—O3—C11—C1391.0 (4)
C5—C6—C7—O1−179.0 (2)C10—O3—C11—C12−150.6 (3)
C5—C6—C7—C20.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13B···Cgi0.962.783.515 (3)134

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2521).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2384. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography