PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o2.
Published online 2008 December 3. doi:  10.1107/S1600536808039731
PMCID: PMC2967854

2,3-Bis(2-methoxy­phen­yl)tetra­zolium-5-thiol­ate–acetone–dichloro­methane (1/0.4/0.1)

Abstract

In the title compound, C15H14N4O2S·0.4C3H6O·0.1CH2Cl2, two benzene rings in the ortho-meth­oxy dehydro­dithizone (omd) mol­ecule are twisted out of the tetra­zole plane with the meth­oxy groups in a cis orientation relative to the tetrazole backbone. The acetone is located on a special position. The dihedral angles formed by the benzene rings with the central five-membered ring are 63.14 (8) and 57.06 (6)°. In the crystal structure, the relatively short distance of 3.886 (3) Å between the centroids of benzene rings from two neighbouring omd mol­ecules indicate π–π stacking inter­actions.

Related literature

For general background, see: Al-Salihy & Freiser (1970 [triangle]); Irving (1977 [triangle]); Allen (2002 [triangle]). For details of the synthesis, see: Mirkhalaf et al. (1998 [triangle]); Irving et al. (1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-000o2-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O2S·0.4C3H6O·0.1CH2Cl2
  • M r = 346.09
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-000o2-efi2.jpg
  • a = 19.5069 (13) Å
  • b = 12.5245 (7) Å
  • c = 13.2780 (10) Å
  • V = 3244.0 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 100 (2) K
  • 0.33 × 0.12 × 0.11 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.919, T max = 0.972
  • 10890 measured reflections
  • 4013 independent reflections
  • 2571 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.169
  • S = 1.06
  • 4013 reflections
  • 238 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.83 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039731/cv2466sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039731/cv2466Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the National Research Foundation of South Africa is gratefully acknowledged.

supplementary crystallographic information

Comment

The effect of electron donating (–CH3) and withdrawing groups (F, Cl, Br, I) on the phenyl rings of dithizone, (PhNHN)2CS, was investigated by Al-Salihy and Freiser (1970), and expressed in terms of acid dissociation constants. In view of dithizone's extensive applications in the field of heavy metals analyses (Irving, 1977) we have decided to execute an extended investigation of the above by, amongst others, also including methoxy groups substituted on the different phenyl ring positions. Growing suitable crystals for X-ray diffraction of the ortho-methoxy derivative of dithizone (1 on Scheme 2) proved to be problematic. However, oxidation of the same, resulting in the zwitter-ionic tetrazolium salt of the title compound, ortho-methoxy dehydrodithizone, (2), yielded a product that readily crystallizes in polar solvent mixtures. Herewith we present the crystal structure of the title compound (2).

In (2) (Fig. 1), all bond lengths and angles are normal (Allen, 2002). The phenyl rings adopt a non-parallel arrangement with the dehydrodithizone backbone with dihedral angles of 63.14 (8)° and 57.06 (6)° for rings C11—C16 and C21—C26 respectively, mainly due to their close proximities on the tetrazole moiety. The preferred orientation is supported by interaction of one of the methoxy moieties to N1 and the π-π stacking of the phenyl rings of C21—C26 situated around an inversion center (centroid to centroid distance = 3.886 Å, Table 1).

Experimental

Reagents were purchased from Sigma-Aldrich, and solvents (AR) from Merck, and used without further purification. The ortho-methoxy derivative of dithizone, (o-MeOPhNHN)2CS, 1, was prepared from 2-methoxyaniline and ammonium sulfide according to the procedure reported by Mirkhalaf et al., 1998. The synthesis of the title compound, ortho-methoxy dehydrodithizone, 2, was done according to a method by Irving et al., (1971) as follows. A solution of (o-MeOPhNHN)2CS (0.2 g, 0.6 mmol) in dichloromethane (60 ml) was stirred (2 hrs) with a solution of potassium hexacyanoiron (III) (0.48 g) and potassium carbonate (0.46 g) in water (20 ml). The organic layer was removed, washed with water, and the solvent removed under reduced pressure. The product residue, on recrystallization from a minimum dichloromethane in acetone and water, gave 0.098 g orange-brown crystals of 2. Yield: 49%

Analytical data: M.p 192 ° C λmax(acetone) 445.6 nm (ε = 1360 dm3 mol-1 cm-1) δH (300 MHz, (CD3)2SO, 7.10 (1 H, t, p-C6H5), 7.21 (1 H, d, m-C6H5), 7.61 (1 H, t, m-C6H5), 7.76 (1 H, d, o-C6H5).

Refinement

The aromatic, methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95 - 0.99 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons on the dehydrodithizone were refined from electron density, while those on the acetone solvent molecule as staggered. Large anisotropic displacements were observed on the proposed acetone solvent molecule which was subsequently treated as disordered. From this we were able to detect a minor component of dichloromethane solvate as well. The occupancy ratios for these two solvent molecules were obtained from free-refining their occupancies, and later fixing these values to 80:10 for acetone and dichloromethane, respectively. The positions of the –CH3 and –CH2 moieties of the two solvents could not be defined clearly and was subsequently refined as a fully occupied carbon site. The final result is a acetone molecule lying on a twofold rotation axis with the dichloromethane occupying two positions.

Figures

Fig. 1.
View of (2) with 30% probability displacement ellipsoids. Accented lettering indicate atoms generated by symmetry (2 - x, y, 3/2 - z).
Fig. 2.
The formation of the title compound.

Crystal data

C15H14N4O2S·0.4C3H6O·0.1CH2Cl2F(000) = 1448
Mr = 346.09Dx = 1.417 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1519 reflections
a = 19.5069 (13) Åθ = 2.5–24.4°
b = 12.5245 (7) ŵ = 0.25 mm1
c = 13.278 (1) ÅT = 100 K
V = 3244.0 (4) Å3Needle, red
Z = 80.33 × 0.12 × 0.11 mm

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer4013 independent reflections
Radiation source: fine-focus sealed tube2571 reflections with I > 2σ(I)
graphiteRint = 0.051
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.1°
[var phi] and ω scansh = −15→26
Absorption correction: multi-scan (SADABS; Bruker, 2008)k = −12→16
Tmin = 0.919, Tmax = 0.972l = −13→17
10890 measured reflections

Refinement

Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059w = 1/[σ2(Fo2) + (0.0769P)2 + 1.158P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.84 e Å3
4013 reflectionsΔρmin = −0.57 e Å3
238 parameters

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 200 s/frame. A total of 358 frames were collected with a frame width of 0.5° covering up to θ = 28.30° with 99.2% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.94113 (4)0.35569 (6)0.39602 (6)0.0240 (2)
N10.92670 (12)0.20582 (17)0.25103 (17)0.0175 (5)
N20.90050 (11)0.20201 (16)0.16004 (17)0.0164 (5)
N30.87217 (12)0.29604 (17)0.13628 (18)0.0175 (5)
N40.87976 (12)0.36420 (17)0.21135 (18)0.0191 (5)
C30.91500 (14)0.3082 (2)0.2832 (2)0.0184 (6)
C110.83626 (14)0.3154 (2)0.0438 (2)0.0175 (6)
C120.77732 (14)0.2548 (2)0.0246 (2)0.0189 (6)
C130.74450 (15)0.2681 (2)−0.0670 (2)0.0222 (6)
H130.70520.2265−0.08280.027*
C140.76917 (17)0.3422 (2)−0.1354 (2)0.0258 (7)
H140.74640.3511−0.1980.031*
C150.82674 (16)0.4038 (2)−0.1141 (2)0.0255 (7)
H150.84240.4553−0.16130.031*
C160.86101 (15)0.3897 (2)−0.0240 (2)0.0220 (6)
H160.90080.4303−0.00890.026*
O10.84463 (11)0.01383 (15)0.21656 (16)0.0255 (5)
C10.81522 (18)−0.0853 (2)0.2495 (3)0.0347 (8)
H1A0.7779−0.10560.2040.052*
H1B0.7972−0.07690.3180.052*
H1C0.8505−0.1410.24910.052*
C210.90302 (14)0.1126 (2)0.0934 (2)0.0183 (6)
C220.87405 (15)0.0159 (2)0.1243 (2)0.0214 (6)
C230.87648 (16)−0.0689 (2)0.0568 (2)0.0274 (7)
H230.8586−0.13640.0760.033*
C240.90459 (16)−0.0560 (2)−0.0376 (3)0.0299 (7)
H240.9045−0.1145−0.08310.036*
C250.93295 (16)0.0403 (3)−0.0676 (2)0.0286 (7)
H250.95240.0478−0.13290.034*
C260.93252 (15)0.1258 (2)−0.0009 (2)0.0229 (6)
H260.95220.1923−0.01950.027*
O20.75650 (10)0.18958 (15)0.10072 (14)0.0218 (5)
C20.71273 (16)0.1018 (2)0.0731 (3)0.0298 (7)
H2A0.66890.12950.04830.045*
H2B0.70470.05650.13210.045*
H2C0.73480.05960.02010.045*
C010.96482 (19)0.3561 (3)0.6608 (3)0.0505 (13)0.9
H02A0.94760.2990.61720.076*0.8
H02B0.99740.40040.62310.076*0.8
H02C0.92640.40040.68350.076*0.8
H02D0.96940.34990.58680.061*0.1
H02E0.91670.37840.6720.061*0.1
O0110.2112 (4)0.750.084 (2)0.8
C0210.3083 (5)0.750.0332 (14)0.8
Cl10.9637 (7)0.2275 (7)0.6975 (8)0.061 (3)0.1
Cl21.0037 (4)0.4567 (5)0.6826 (5)0.0276 (16)0.1

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0222 (4)0.0265 (4)0.0233 (4)0.0002 (3)−0.0020 (3)−0.0080 (3)
N10.0164 (12)0.0182 (11)0.0179 (11)−0.0017 (9)−0.0018 (9)0.0005 (10)
N20.0148 (12)0.0151 (11)0.0194 (12)−0.0002 (9)−0.0012 (9)−0.0003 (10)
N30.0151 (12)0.0147 (11)0.0227 (12)−0.0005 (9)−0.0010 (10)0.0011 (10)
N40.0180 (12)0.0179 (11)0.0213 (12)−0.0017 (9)−0.0009 (10)−0.0045 (10)
C30.0148 (14)0.0178 (13)0.0225 (14)−0.0017 (11)0.0030 (11)−0.0013 (12)
C110.0172 (14)0.0171 (13)0.0182 (13)0.0041 (11)−0.0004 (11)−0.0006 (11)
C120.0174 (14)0.0169 (13)0.0224 (14)0.0056 (11)0.0021 (11)−0.0008 (12)
C130.0197 (15)0.0240 (15)0.0230 (14)0.0035 (12)−0.0022 (12)−0.0038 (13)
C140.0317 (18)0.0259 (15)0.0198 (14)0.0060 (13)−0.0029 (13)−0.0002 (13)
C150.0310 (17)0.0220 (14)0.0236 (15)0.0038 (13)0.0024 (13)0.0033 (13)
C160.0220 (15)0.0184 (14)0.0254 (15)0.0004 (11)0.0010 (12)0.0006 (13)
O10.0309 (12)0.0187 (10)0.0268 (11)−0.0068 (9)−0.0002 (9)0.0021 (9)
C10.041 (2)0.0239 (16)0.0396 (19)−0.0137 (14)−0.0026 (16)0.0044 (15)
C210.0172 (14)0.0146 (12)0.0231 (14)0.0036 (10)−0.0048 (11)−0.0048 (11)
C220.0185 (14)0.0206 (14)0.0250 (15)0.0023 (11)−0.0044 (12)−0.0013 (12)
C230.0269 (17)0.0186 (14)0.0369 (18)−0.0005 (12)−0.0074 (14)−0.0055 (14)
C240.0287 (17)0.0282 (16)0.0329 (17)0.0085 (13)−0.0108 (14)−0.0107 (15)
C250.0264 (17)0.0345 (17)0.0249 (15)0.0118 (13)−0.0050 (13)−0.0075 (15)
C260.0228 (16)0.0236 (15)0.0222 (14)0.0064 (12)−0.0031 (12)−0.0011 (12)
O20.0205 (11)0.0231 (10)0.0219 (10)−0.0053 (8)0.0001 (9)0.0014 (9)
C20.0250 (17)0.0301 (16)0.0342 (17)−0.0101 (13)−0.0068 (14)0.0055 (15)
C010.0178 (18)0.077 (3)0.057 (3)0.003 (2)−0.0090 (19)0.048 (2)
O010.140 (7)0.026 (3)0.085 (5)0−0.037 (5)0
C020.041 (4)0.033 (3)0.026 (3)0−0.005 (3)0
Cl10.087 (9)0.052 (6)0.043 (6)−0.052 (6)0.001 (6)−0.002 (5)
Cl20.031 (4)0.031 (4)0.021 (3)0.016 (3)0.005 (3)0.002 (3)

Geometric parameters (Å, °)

S1—C31.690 (3)C21—C261.387 (4)
N1—N21.313 (3)C21—C221.398 (4)
N1—C31.371 (3)C22—C231.391 (4)
N2—N31.339 (3)C23—C241.377 (5)
N2—C211.428 (3)C23—H230.95
N3—N41.321 (3)C24—C251.386 (5)
N3—C111.434 (4)C24—H240.95
N4—C31.369 (3)C25—C261.390 (4)
C11—C161.382 (4)C25—H250.95
C11—C121.401 (4)C26—H260.95
C12—O21.361 (3)O2—C21.439 (3)
C12—C131.385 (4)C2—H2A0.98
C13—C141.385 (4)C2—H2B0.98
C13—H130.95C2—H2C0.98
C14—C151.392 (4)C01—C021.494 (4)
C14—H140.95C01—Cl21.499 (7)
C15—C161.382 (4)C01—Cl11.683 (8)
C15—H150.95C01—H02A0.98
C16—H160.95C01—H02B0.98
O1—C221.353 (3)C01—H02C0.98
O1—C11.436 (3)C01—H02D0.99
C1—H1A0.98C01—H02E0.99
C1—H1B0.98O01—C021.216 (8)
C1—H1C0.98C02—C01i1.494 (4)
Cg···Cgii3.886 (3)
N2—N1—C3104.8 (2)C23—C24—H24119.2
N1—N2—N3110.2 (2)C25—C24—H24119.2
N1—N2—C21125.9 (2)C24—C25—C26119.0 (3)
N3—N2—C21123.9 (2)C24—C25—H25120.5
N4—N3—N2110.2 (2)C26—C25—H25120.5
N4—N3—C11126.3 (2)C21—C26—C25119.1 (3)
N2—N3—C11123.5 (2)C21—C26—H26120.4
N3—N4—C3104.6 (2)C25—C26—H26120.4
N4—C3—N1110.2 (2)C12—O2—C2116.5 (2)
N4—C3—S1126.1 (2)O2—C2—H2A109.5
N1—C3—S1123.7 (2)O2—C2—H2B109.5
C16—C11—C12122.2 (3)H2A—C2—H2B109.5
C16—C11—N3120.1 (2)O2—C2—H2C109.5
C12—C11—N3117.7 (2)H2A—C2—H2C109.5
O2—C12—C13125.9 (3)H2B—C2—H2C109.5
O2—C12—C11115.8 (2)C02—C01—Cl287.2 (4)
C13—C12—C11118.3 (3)C02—C01—Cl152.7 (4)
C12—C13—C14119.7 (3)Cl2—C01—Cl1139.1 (5)
C12—C13—H13120.1C02—C01—H02A109.5
C14—C13—H13120.1Cl2—C01—H02A154.4
C13—C14—C15121.2 (3)Cl1—C01—H02A57.8
C13—C14—H14119.4C02—C01—H02B109.5
C15—C14—H14119.4Cl2—C01—H02B45.2
C16—C15—C14119.7 (3)Cl1—C01—H02B134.2
C16—C15—H15120.2H02A—C01—H02B109.5
C14—C15—H15120.2C02—C01—H02C109.5
C15—C16—C11118.8 (3)Cl2—C01—H02C81.5
C15—C16—H16120.6Cl1—C01—H02C116.2
C11—C16—H16120.6H02A—C01—H02C109.5
C22—O1—C1117.5 (2)H02B—C01—H02C109.5
O1—C1—H1A109.5C02—C01—H02D135.6
O1—C1—H1B109.5Cl2—C01—H02D102.3
H1A—C1—H1B109.5Cl1—C01—H02D102.3
O1—C1—H1C109.5H02A—C01—H02D52.1
H1A—C1—H1C109.5H02B—C01—H02D58.7
H1B—C1—H1C109.5H02C—C01—H02D114.8
C26—C21—C22122.4 (3)C02—C01—H02E115.4
C26—C21—N2118.7 (2)Cl2—C01—H02E102.3
C22—C21—N2118.9 (3)Cl1—C01—H02E102.3
O1—C22—C23125.7 (3)H02A—C01—H02E88.3
O1—C22—C21117.0 (2)H02B—C01—H02E122.1
C23—C22—C21117.3 (3)H02C—C01—H02E21.5
C24—C23—C22120.7 (3)H02D—C01—H02E104.9
C24—C23—H23119.7O01—C02—C01i113.6 (3)
C22—C23—H23119.7O01—C02—C01113.6 (3)
C23—C24—C25121.5 (3)C01i—C02—C01132.8 (6)
C3—N1—N2—N3−1.4 (3)C12—C11—C16—C15−0.6 (4)
C3—N1—N2—C21176.8 (2)N3—C11—C16—C15177.6 (2)
N1—N2—N3—N40.5 (3)N1—N2—C21—C26−122.6 (3)
C21—N2—N3—N4−177.7 (2)N3—N2—C21—C2655.4 (4)
N1—N2—N3—C11−176.7 (2)N1—N2—C21—C2259.1 (4)
C21—N2—N3—C115.1 (4)N3—N2—C21—C22−122.9 (3)
N2—N3—N4—C30.6 (3)C1—O1—C22—C232.2 (4)
C11—N3—N4—C3177.7 (2)C1—O1—C22—C21−179.5 (3)
N3—N4—C3—N1−1.5 (3)C26—C21—C22—O1−177.7 (3)
N3—N4—C3—S1178.6 (2)N2—C21—C22—O10.5 (4)
N2—N1—C3—N41.8 (3)C26—C21—C22—C230.8 (4)
N2—N1—C3—S1−178.2 (2)N2—C21—C22—C23179.0 (2)
N4—N3—C11—C1666.4 (4)O1—C22—C23—C24176.4 (3)
N2—N3—C11—C16−116.8 (3)C21—C22—C23—C24−1.9 (4)
N4—N3—C11—C12−115.2 (3)C22—C23—C24—C251.8 (5)
N2—N3—C11—C1261.6 (3)C23—C24—C25—C26−0.4 (4)
C16—C11—C12—O2−176.0 (2)C22—C21—C26—C250.6 (4)
N3—C11—C12—O25.6 (4)N2—C21—C26—C25−177.7 (2)
C16—C11—C12—C132.1 (4)C24—C25—C26—C21−0.8 (4)
N3—C11—C12—C13−176.2 (2)C13—C12—O2—C222.9 (4)
O2—C12—C13—C14176.1 (3)C11—C12—O2—C2−159.1 (3)
C11—C12—C13—C14−1.9 (4)Cl2—C01—C02—O01−160.1 (3)
C12—C13—C14—C150.2 (4)Cl1—C01—C02—O0111.4 (6)
C13—C14—C15—C161.3 (5)Cl2—C01—C02—C01i19.9 (3)
C14—C15—C16—C11−1.1 (4)Cl1—C01—C02—C01i−168.6 (6)

Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2466).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Al-Salihy, A. R. & Freiser, H. (1970). Talanta, 17, 182–185. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Irving, H. M. N. H. (1977). Dithizone Analytical Sciences Monographs No. 5. London: The Chemical Society.
  • Irving, H. M. N. H., Kiwan, A. M., Rupainwar, D. C. & Sahota, S. S. (1971). Anal. Chim. Acta, 56, 205–220.
  • Mirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem.452, 203–213.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography