PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o1.
Published online 2008 December 3. doi:  10.1107/S1600536808039743
PMCID: PMC2967853

2-Phenyl-5,7-bis­(prop-2-en-1-yl­oxy)-4H-chromen-4-one

Abstract

In the title compound, C21H18O4, tthe dihedral angle between the chromene ring system and the pendant phenyl ring is 6.1 (1)°. The crystal structure is stabilized by an intermolecular C—H(...)O and C—H(...)π inter­actions.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see Brooks (1998 [triangle]); Hatakeyama et al. (1988 [triangle]); Hyana & Saimoto (1987 [triangle]); Tang et al. (2007 [triangle]). For a detailed account of the importance of 4H-chromenes, see Liu et al. (2007 [triangle]); Wang, Fang et al. (2003 [triangle]); Wang, Zhang et al. (2003 [triangle]). For hydrogen-bonding inter­actions and motifs, see: Bernstein et al. (1995 [triangle]); Desiraju (1989 [triangle]); Desiraju & Steiner (1999 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-000o1-scheme1.jpg

Experimental

Crystal data

  • C21H18O4
  • M r = 334.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-000o1-efi1.jpg
  • a = 6.299 (2) Å
  • b = 15.798 (6) Å
  • c = 17.429 (6) Å
  • V = 1734.3 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.35 × 0.32 × 0.29 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.969, T max = 0.975
  • 13979 measured reflections
  • 2055 independent reflections
  • 1793 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.098
  • S = 1.01
  • 2055 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.10 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039743/fb2126sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039743/fb2126Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AN thanks Dr S. Kannan and Dr B. S. Krishnamurthy, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

supplementary crystallographic information

Comment

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctional chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives, the single-crystal X-ray diffraction study on the title compound was carried out.

The chromene ring is almost planar: The puckering amplitude of the chromene ring is 0.097 (3) Å. In the related chromene derivatives (Wang, Zhang et al., 2003; Wang, Fang et al., 2003), the chromene ring is also planar. In the title structure, the interplanar angle between the chromene ring and the 2-phenyl ring is 6.1 (1)° thereby indicating their almost coplanar arrangement (Fig. 1). The propenyloxy substituents at both C5 and C7 are coplanar with the chromene ring with the respective interplanar angles 1.7 (2)° and 8.8 (2)°.

The crystal structure is stabilized by the interplay of C–H···O and C–H···π interactions (Fig. 2, Table 1; Desiraju & Steiner, 1999; Desiraju, 1989). Each of C15–H15A···O12, C19–H19A···O16 and C25–H25···O1 interactions are involved in the S(5) motifs (Bernstein et al., 1995; Etter, 1990).

Experimental

A suspension of chrysin (3.93 mmol, 1.00 g) and potassium carbonate (11.81 mmol, 1.64 g) in dimethyl formamide (10 ml) were added into a round bottom flask. The reaction mixture was heated to 383 K for 2–3 h. The reaction mixture was then cooled to 333 K and allyl bromide (15.74 mmol, 1.90 g) was slowly added to the reaction mixture with the help of a dropping funnel. The reaction mixture was maintained for 8–9 h at 333 K and monitored by high pressure liquid chromatography (HPLC). After completion of the reaction, the content was quenched with water and stirred for 30–45 min at 303 K. T he obtained crude solid was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The compound was purified by column chromatography using ethyl acetate/n-hexane (1:1) as eluent. All highly pure column fractions were concentrated in a rota evaporator. The dried compound was dissolved in dichloromethane/hexane (1:1) mixture (10 ml). The clear solution was kept for a week and the resulting needle shaped crystals of average size 0.3 mm were washed with n-hexane. The crystals were dried over high vacuum at 343–348 K. Yield: 90%

Refinement

In the absence of significant anomalous scattering effects, 1488 Friedel pairs have been merged. All the H-atoms were observed in the difference electron density map. However, they were situated into idealized positions with C–H = 0.93 and 0.97 Å for aryl and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The title molecule showing the displacement ellipsoids depicted at the 50% probability level for all non-H atoms. The hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The molecular packing viewed down the c-axis. Dashed lines represent weak C–H···O interactions.

Crystal data

C21H18O4Dx = 1.281 Mg m3
Mr = 334.35Melting point = 434–437 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 576 reflections
a = 6.299 (2) Åθ = 1.8–26.0°
b = 15.798 (6) ŵ = 0.09 mm1
c = 17.429 (6) ÅT = 293 K
V = 1734.3 (11) Å3Needle, colourless
Z = 40.35 × 0.32 × 0.29 mm
F(000) = 704

Data collection

Bruker SMART APEX CCD diffractometer3543 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
graphiteRint = 0.062
Detector resolution: 0.3 pixels mm-1θmax = 26.4°, θmin = 1.7°
ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)k = −19→19
Tmin = 0.969, Tmax = 0.975l = −21→20
13979 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1512P] where P = (Fo2 + 2Fc2)/3
2055 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = −0.10 e Å3
72 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4396 (4)1.06971 (12)0.13245 (11)0.0650 (6)
C20.5860 (6)1.0832 (2)0.0765 (2)0.0639 (8)
C30.5782 (6)1.0403 (2)0.0102 (2)0.0745 (9)
H30.67611.0541−0.02780.089*
C40.4277 (6)0.9746 (2)−0.0056 (2)0.0696 (9)
C50.0891 (6)0.90891 (19)0.04852 (18)0.0608 (8)
C6−0.0584 (6)0.90372 (18)0.10630 (18)0.0622 (8)
H6−0.17280.86680.10200.075*
C7−0.0358 (6)0.95419 (19)0.17160 (18)0.0590 (8)
C80.1332 (5)1.00863 (19)0.17997 (18)0.0610 (9)
H80.14951.04140.22390.073*
C90.2778 (5)1.01254 (18)0.12026 (18)0.0557 (8)
C100.2641 (5)0.96435 (18)0.05336 (17)0.0559 (8)
O110.4392 (5)0.93093 (17)−0.06419 (14)0.1049 (9)
O120.0781 (4)0.86278 (13)−0.01724 (12)0.0748 (6)
C13−0.0923 (6)0.8053 (2)−0.02818 (18)0.0778 (10)
H13A−0.22670.8353−0.02790.093*
H13B−0.09420.76350.01250.093*
C14−0.0582 (8)0.7632 (2)−0.1044 (2)0.0860 (11)
H14−0.15790.7232−0.11960.103*
C150.0989 (7)0.7778 (2)−0.15084 (19)0.0906 (12)
H15A0.20210.8173−0.13780.109*
H15B0.10800.7487−0.19710.109*
O16−0.1951 (4)0.94477 (13)0.22389 (13)0.0729 (7)
C17−0.1985 (6)1.0013 (2)0.28825 (18)0.0773 (11)
H17A−0.19291.05940.27040.093*
H17B−0.07530.99120.32040.093*
C18−0.3953 (7)0.9877 (2)0.3335 (2)0.0815 (11)
H18−0.42061.02550.37330.098*
C19−0.5312 (6)0.9305 (3)0.3237 (2)0.1011 (13)
H19A−0.51360.89100.28460.121*
H19B−0.64960.92770.35550.121*
C200.7460 (6)1.1464 (2)0.0988 (2)0.0670 (9)
C210.9252 (7)1.1595 (2)0.0537 (2)0.0818 (11)
H210.94251.12920.00840.098*
C221.0767 (7)1.2170 (3)0.0757 (3)0.0980 (13)
H221.19611.22530.04520.118*
C231.0540 (8)1.2625 (3)0.1423 (3)0.1075 (15)
H231.15721.30150.15680.129*
C240.8787 (8)1.2503 (3)0.1873 (3)0.1096 (14)
H240.86341.28060.23270.131*
C250.7248 (6)1.1932 (2)0.1657 (2)0.0887 (11)
H250.60521.18590.19620.106*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0626 (14)0.0716 (14)0.0608 (14)−0.0033 (13)0.0010 (14)0.0035 (11)
C20.059 (2)0.066 (2)0.067 (2)0.008 (2)0.003 (2)0.0157 (18)
C30.071 (2)0.084 (2)0.069 (2)−0.004 (2)0.016 (2)0.007 (2)
C40.067 (2)0.079 (2)0.063 (2)0.003 (2)0.006 (2)0.0007 (19)
C50.072 (2)0.0608 (19)0.050 (2)0.007 (2)−0.003 (2)0.0017 (16)
C60.066 (2)0.0620 (18)0.058 (2)−0.0021 (18)0.003 (2)0.0036 (17)
C70.062 (2)0.0673 (19)0.048 (2)0.0043 (19)0.0072 (19)0.0059 (17)
C80.067 (2)0.0646 (19)0.0509 (19)0.0001 (18)0.001 (2)0.0015 (16)
C90.054 (2)0.0572 (17)0.056 (2)0.0028 (18)−0.0023 (19)0.0097 (16)
C100.059 (2)0.0577 (17)0.051 (2)0.0056 (19)0.0027 (18)0.0042 (15)
O110.107 (2)0.128 (2)0.0792 (18)−0.029 (2)0.0327 (17)−0.0308 (16)
O120.0831 (16)0.0798 (14)0.0614 (15)−0.0099 (15)0.0049 (14)−0.0105 (13)
C130.086 (3)0.076 (2)0.071 (2)−0.013 (2)0.002 (2)−0.0011 (19)
C140.110 (3)0.078 (2)0.070 (3)−0.008 (3)−0.013 (3)−0.010 (2)
C150.118 (3)0.094 (3)0.060 (2)0.011 (3)−0.004 (3)−0.007 (2)
O160.0753 (17)0.0844 (14)0.0591 (14)−0.0090 (13)0.0117 (13)−0.0065 (12)
C170.088 (3)0.088 (2)0.057 (2)−0.004 (2)0.010 (2)−0.0027 (19)
C180.092 (3)0.092 (3)0.060 (2)0.012 (3)0.000 (3)0.003 (2)
C190.082 (3)0.125 (3)0.096 (3)0.003 (3)0.010 (3)−0.010 (3)
C200.061 (2)0.0622 (19)0.078 (3)0.002 (2)−0.004 (2)0.0161 (19)
C210.070 (3)0.084 (2)0.092 (3)0.000 (2)−0.002 (3)0.028 (2)
C220.072 (3)0.095 (3)0.127 (4)−0.012 (3)−0.002 (3)0.044 (3)
C230.092 (3)0.083 (3)0.147 (5)−0.021 (3)−0.015 (4)0.012 (3)
C240.096 (3)0.100 (3)0.132 (4)−0.022 (3)0.000 (3)−0.019 (3)
C250.077 (3)0.082 (2)0.107 (3)−0.010 (2)0.005 (3)−0.010 (2)

Geometric parameters (Å, °)

O1—C21.360 (4)C14—H140.9300
O1—C91.378 (3)C15—H15A0.9300
C2—C31.340 (4)C15—H15B0.9300
C2—C201.471 (5)O16—C171.434 (3)
C3—C41.433 (5)C17—C181.485 (5)
C3—H30.9300C17—H17A0.9700
C4—O111.233 (3)C17—H17B0.9700
C4—C101.465 (4)C18—C191.256 (4)
C5—O121.360 (3)C18—H180.9300
C5—C61.373 (4)C19—H19A0.9300
C5—C101.410 (4)C19—H19B0.9300
C6—C71.397 (4)C20—C251.387 (4)
C6—H60.9300C20—C211.391 (5)
C7—O161.364 (4)C21—C221.373 (5)
C7—C81.376 (4)C21—H210.9300
C8—C91.384 (4)C22—C231.373 (5)
C8—H80.9300C22—H220.9300
C9—C101.395 (4)C23—C241.368 (6)
O12—C131.419 (4)C23—H230.9300
C13—C141.501 (4)C24—C251.377 (5)
C13—H13A0.9700C24—H240.9300
C13—H13B0.9700C25—H250.9300
C14—C151.299 (5)
C2—O1—C9119.6 (3)C15—C14—H14117.2
C3—C2—O1121.0 (3)C13—C14—H14117.2
C3—C2—C20126.6 (4)C14—C15—H15A120.0
O1—C2—C20112.4 (3)C14—C15—H15B120.0
C2—C3—C4123.8 (3)H15A—C15—H15B120.0
C2—C3—H3118.1C7—O16—C17117.8 (3)
C4—C3—H3118.1O16—C17—C18109.7 (3)
O11—C4—C3121.7 (3)O16—C17—H17A109.7
O11—C4—C10124.1 (3)C18—C17—H17A109.7
C3—C4—C10114.2 (3)O16—C17—H17B109.7
O12—C5—C6123.5 (3)C18—C17—H17B109.7
O12—C5—C10115.0 (3)H17A—C17—H17B108.2
C6—C5—C10121.5 (3)C19—C18—C17126.9 (4)
C5—C6—C7119.6 (3)C19—C18—H18116.5
C5—C6—H6120.2C17—C18—H18116.5
C7—C6—H6120.2C18—C19—H19A120.0
O16—C7—C8124.5 (3)C18—C19—H19B120.0
O16—C7—C6114.0 (3)H19A—C19—H19B120.0
C8—C7—C6121.5 (3)C25—C20—C21118.3 (4)
C7—C8—C9117.2 (3)C25—C20—C2121.2 (3)
C7—C8—H8121.4C21—C20—C2120.5 (3)
C9—C8—H8121.4C22—C21—C20120.3 (4)
O1—C9—C8113.6 (3)C22—C21—H21119.8
O1—C9—C10122.1 (3)C20—C21—H21119.8
C8—C9—C10124.3 (3)C21—C22—C23120.7 (4)
C9—C10—C5115.9 (3)C21—C22—H22119.7
C9—C10—C4118.9 (3)C23—C22—H22119.7
C5—C10—C4125.2 (3)C24—C23—C22119.7 (4)
C5—O12—C13119.6 (3)C24—C23—H23120.2
O12—C13—C14107.1 (3)C22—C23—H23120.2
O12—C13—H13A110.3C23—C24—C25120.2 (4)
C14—C13—H13A110.3C23—C24—H24119.9
O12—C13—H13B110.3C25—C24—H24119.9
C14—C13—H13B110.3C24—C25—C20120.8 (4)
H13A—C13—H13B108.5C24—C25—H25119.6
C15—C14—C13125.6 (4)C20—C25—H25119.6
C9—O1—C2—C3−1.5 (4)O11—C4—C10—C9174.5 (3)
C9—O1—C2—C20179.6 (2)C3—C4—C10—C9−5.1 (4)
O1—C2—C3—C4−4.0 (5)O11—C4—C10—C5−5.6 (5)
C20—C2—C3—C4174.8 (3)C3—C4—C10—C5174.8 (3)
C2—C3—C4—O11−172.6 (3)C6—C5—O12—C13−0.4 (4)
C2—C3—C4—C107.1 (5)C10—C5—O12—C13−179.7 (3)
O12—C5—C6—C7−179.3 (3)C5—O12—C13—C14−178.8 (3)
C10—C5—C6—C7−0.1 (5)O12—C13—C14—C15−0.3 (5)
C5—C6—C7—O16178.4 (3)C8—C7—O16—C176.5 (4)
C5—C6—C7—C8−0.8 (5)C6—C7—O16—C17−172.7 (3)
O16—C7—C8—C9−177.9 (3)C7—O16—C17—C18173.6 (3)
C6—C7—C8—C91.2 (4)O16—C17—C18—C196.9 (5)
C2—O1—C9—C8−176.4 (2)C3—C2—C20—C25173.0 (3)
C2—O1—C9—C103.2 (4)O1—C2—C20—C25−8.1 (4)
C7—C8—C9—O1178.8 (2)C3—C2—C20—C21−8.2 (5)
C7—C8—C9—C10−0.9 (4)O1—C2—C20—C21170.7 (3)
O1—C9—C10—C5−179.5 (2)C25—C20—C21—C220.4 (5)
C8—C9—C10—C50.1 (4)C2—C20—C21—C22−178.4 (3)
O1—C9—C10—C40.3 (4)C20—C21—C22—C23−0.1 (5)
C8—C9—C10—C4179.9 (3)C21—C22—C23—C240.2 (6)
O12—C5—C10—C9179.7 (3)C22—C23—C24—C25−0.6 (7)
C6—C5—C10—C90.4 (4)C23—C24—C25—C201.0 (6)
O12—C5—C10—C4−0.1 (4)C21—C20—C25—C24−0.9 (5)
C6—C5—C10—C4−179.4 (3)C2—C20—C25—C24178.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15A···O120.932.352.691 (4)101
C19—H19A···O160.932.422.749 (5)101
C25—H25···O10.932.392.714 (4)101
C17—H17B···O11i0.972.513.229 (4)131
C14—H14···Cg1ii0.933.224.081154

Symmetry codes: (i) −x+1/2, −y+2, z+1/2; (ii) −x−1, y+3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2126).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brooks, G. T. (1998). Pestic. Sci.22, 41–50.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.
  • Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  • Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.
  • Sheldrick, G. M. (1998). SADABS University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  • Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.
  • Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst.E59, o1244–o1245.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography