PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m1.
Published online 2008 December 3. doi:  10.1107/S1600536808039846
PMCID: PMC2967846

Bis(N,N-dimethyl­formamide-κO)bis­(2,4,6-trinitro­phenolato-κ2 O 1,O 2)copper(II)

Abstract

The mol­ecule of the title complex, [Cu(C6H2N3O7)2(C3H7NO)2], is disposed about a crystallographic centre of symmetry. The CuII cation is six-coordinated by two phenolate O atoms and two ortho-nitro O atoms of two picrate units and by two carbonyl O atoms from two coordinated dimethyl­formamide mol­ecules, forming a distorted octa­hedral geometry.

Related literature

For background to 2,4,6-trinitro­phenoxides, see: Arnaud-Neu et al. (2005 [triangle]); Dong et al. (1998 [triangle], 2007a [triangle],b [triangle]); Harrowfield et al. (1995 [triangle], 1998 [triangle]); Liu et al. (2008 [triangle]); Marchand et al. (2003 [triangle]); Muthamizhchelvan et al. (2005 [triangle]); Song et al. (2007 [triangle]); Talanova et al. (1999 [triangle]); Venkatasubramanian et al. (1985 [triangle]); Wang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-000m1-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H2N3O7)2(C3H7NO)2]
  • M r = 665.94
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-000m1-efi1.jpg
  • a = 8.0620 (10) Å
  • b = 8.3361 (11) Å
  • c = 9.8429 (14) Å
  • α = 73.945 (1)°
  • β = 88.796 (2)°
  • γ = 87.968 (2)°
  • V = 635.25 (15) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 298 (2) K
  • 0.45 × 0.42 × 0.30 mm

Data collection

  • Siemens SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.673, T max = 0.762
  • 3320 measured reflections
  • 2198 independent reflections
  • 1973 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.078
  • S = 1.08
  • 2198 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039846/hg2446sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039846/hg2446Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the ‘Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-05-19 A), which are gratefully acknowledged.

supplementary crystallographic information

Comment

2,4,6-Trinitrophenoxides, 'picrates', play an important role in the modern coordination chemistry (Dong et al., 1998; Dong et al., 2007a). Picrate anion with extraordinary varieties in the binding of complexes, has great potential in building coordination networks (Liu et al., 2008). They can act as the bridging mono- (Arnaud-Neu et al., 2005; Wang et al., 2003), di- (Marchand et al., 2003; Song et al., 2007), tri- (Harrowfield et al., 1995; Dong et al., 1998; Dong et al., 2007a), tetra- (Venkatasubramanian et al., 1985) or penta- (Dong et al., 2007b; Harrowfield et al., 1998) dentate ligands via the phenolic oxygen, ortho-nitro oxygen and para-nitro oxygen atoms to build coordination networks as well as interlink the one-dimensional or two-dimensional molecules into frameworks via the hydrogen bonds (Muthamizhchelvan et al., 2005) or π-π stacking interactions (Talanova et al., 1999). Here, in continuation of our previous studies on synthesis and structural characterization of transition metal complexes with salen-type bisoxime chelating ligands, a single-crystal of unexpected complex, bis(N,N-dimethylformamide-κO)bis(2,4,6-trinitrophenolato- κ2 O,O')copper(II), was obtained and structurally characterized by X-ray crystallography.

The crystal structure of the title complex consists of discrete C18H18CuN8O16 molecules (Fig. 1), in which all bond lengths are in normal ranges. The two benzene rings in each molecule of the title complex are parallel and the distance between them is 2.115 (2)Å. The central CuII atom is located on a crystallographic inversion center. The carbonyl oxygens O8, O8i and the phenoxy oxygens O1, O1i(symmetry code (i) -x=1, -y+1, -z+1) coordinate to the copper atom to form a distorted square planar structure with Cu1-O2 and Cu1-O8 bond lengths of 1.9226 (15) and 1.9401 (15)Å respectively. The two ortho-nitro oxygen atoms (O2 and O2i) occupy axial positions with Cu1-O2 = 2.659 (2)Å to give a distorted octahedral coordination geometry around the copper atom.

Experimental

Copper(II) picrate tetrahydrate and 5,5'-dihydroxy-2,2'-[1,1'-(propane-1,3-diyldioxydinitrilo)diethlidyne]diphenol were synthesized by an analogous method (Dong et al., 2007a). A ethyl acetate-N,N-dimethylformamide mixed solution (2 ml) of 5,5'-dihydroxy-2,2'-[1,1'-(propane-1,3-diyldioxydinitrilo)diethlidyne]diphenol (4.1 mg, 0.01 mmol) was added dropwise to a acetone solution (2 ml) of copper(II) picrate tetrahydrate (6.1 mg, 0.01 mmol) at room temperature. The brilliant yellow solution obtained was placed in n-hexane sphere and allowed to stand at room temperature for about several weeks. Along with diffusion of n-hexane into the mixed solution of the complex, Green block-like single crystals of bis(N,N-dimethylformamide-κO)bis(2,4,6-trinitrophenolato- κ2 O,O')copper(II) complex suitable for X-ray crystallographic analysis were obtained. Anal. Calc. for C18H18CuN8O16: C, 34,51; H, 3.48; N, 16.10; Cu, 9.13%. Found: C, 34,73; H, 3.51; N, 16.17; Cu, 9.01%.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CH), Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(C).

Figures

Fig. 1.
The molecule structure of the title complex with atom numbering scheme [Symmetry codes: -x + 1,-y + 1,-z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

[Cu(C6H2N3O7)2(C3H7NO)2]Z = 1
Mr = 665.94F(000) = 339
Triclinic, P1Dx = 1.741 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.062 (1) ÅCell parameters from 2174 reflections
b = 8.3361 (11) Åθ = 2.5–27.5°
c = 9.8429 (14) ŵ = 0.96 mm1
α = 73.945 (1)°T = 298 K
β = 88.796 (2)°Block-like, green
γ = 87.968 (2)°0.45 × 0.42 × 0.30 mm
V = 635.25 (15) Å3

Data collection

Siemens SMART 1000 CCD area-detector diffractometer2198 independent reflections
Radiation source: fine-focus sealed tube1973 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.673, Tmax = 0.762k = −9→6
3320 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.036P)2 + 0.273P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2198 reflectionsΔρmax = 0.22 e Å3
199 parametersΔρmin = −0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.141 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.02554 (17)
N10.5597 (3)0.5206 (2)0.1667 (2)0.0339 (5)
N20.8515 (3)1.0013 (3)−0.1186 (2)0.0407 (5)
N30.5610 (3)1.0497 (2)0.3079 (2)0.0341 (5)
N40.9697 (2)0.3374 (2)0.4240 (2)0.0289 (4)
O10.4863 (2)0.71913 (19)0.36927 (16)0.0332 (4)
O20.4407 (2)0.4683 (2)0.2441 (2)0.0497 (5)
O30.6381 (3)0.4363 (2)0.1017 (2)0.0496 (5)
O40.9214 (3)0.9088 (3)−0.1814 (2)0.0587 (6)
O50.8672 (3)1.1525 (3)−0.1527 (2)0.0639 (6)
O60.6713 (3)1.1133 (3)0.3553 (2)0.0552 (5)
O70.4137 (3)1.0653 (2)0.3315 (2)0.0556 (5)
O80.72371 (18)0.47226 (19)0.43167 (16)0.0306 (4)
C10.5606 (3)0.7778 (3)0.2512 (2)0.0255 (5)
C20.6088 (3)0.6916 (3)0.1486 (2)0.0265 (5)
C30.7030 (3)0.7633 (3)0.0293 (2)0.0301 (5)
H30.73500.7018−0.03310.036*
C40.7490 (3)0.9268 (3)0.0041 (2)0.0298 (5)
C50.7014 (3)1.0223 (3)0.0951 (2)0.0287 (5)
H50.73121.13310.07670.034*
C60.6098 (3)0.9480 (3)0.2118 (2)0.0259 (5)
C70.8263 (3)0.3548 (3)0.4840 (2)0.0278 (5)
H70.79890.27740.56870.033*
C81.0134 (3)0.4484 (4)0.2868 (3)0.0434 (6)
H8A0.97570.40340.21340.065*
H8B1.13170.45870.27950.065*
H8C0.96150.55640.27680.065*
C91.0878 (3)0.2028 (3)0.4895 (3)0.0402 (6)
H9A1.04760.14410.58170.060*
H9B1.19330.24890.49790.060*
H9C1.10010.12700.43200.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0244 (2)0.0238 (2)0.0255 (2)−0.00033 (15)0.00563 (15)−0.00252 (15)
N10.0396 (12)0.0273 (11)0.0347 (11)−0.0003 (9)−0.0077 (9)−0.0081 (9)
N20.0390 (12)0.0539 (15)0.0278 (11)−0.0100 (11)0.0067 (9)−0.0084 (10)
N30.0480 (13)0.0224 (10)0.0299 (10)0.0035 (9)0.0070 (9)−0.0051 (8)
N40.0255 (10)0.0290 (10)0.0325 (10)0.0012 (8)0.0019 (8)−0.0097 (8)
O10.0358 (9)0.0260 (8)0.0316 (9)0.0026 (7)0.0142 (7)0.0011 (7)
O20.0463 (11)0.0393 (10)0.0610 (12)−0.0169 (9)0.0065 (9)−0.0085 (9)
O30.0708 (14)0.0310 (10)0.0510 (12)0.0033 (9)−0.0010 (10)−0.0187 (9)
O40.0601 (13)0.0758 (15)0.0440 (12)−0.0094 (11)0.0237 (10)−0.0236 (11)
O50.0878 (17)0.0495 (13)0.0479 (12)−0.0253 (12)0.0274 (11)−0.0019 (10)
O60.0705 (14)0.0512 (12)0.0538 (12)−0.0025 (11)−0.0067 (10)−0.0306 (10)
O70.0498 (13)0.0475 (12)0.0714 (14)0.0092 (9)0.0224 (10)−0.0225 (10)
O80.0249 (8)0.0303 (9)0.0318 (9)0.0019 (7)0.0065 (6)−0.0015 (7)
C10.0218 (11)0.0253 (11)0.0256 (11)0.0035 (9)−0.0002 (9)−0.0013 (9)
C20.0273 (12)0.0235 (11)0.0274 (11)0.0003 (9)−0.0013 (9)−0.0047 (9)
C30.0316 (12)0.0328 (13)0.0262 (12)0.0031 (10)0.0000 (9)−0.0088 (9)
C40.0286 (12)0.0348 (13)0.0226 (11)−0.0015 (10)0.0024 (9)−0.0026 (9)
C50.0300 (12)0.0239 (11)0.0292 (12)−0.0041 (9)0.0008 (9)−0.0020 (9)
C60.0268 (11)0.0247 (11)0.0259 (11)0.0031 (9)0.0010 (9)−0.0069 (9)
C70.0284 (12)0.0273 (12)0.0267 (11)−0.0027 (9)0.0025 (9)−0.0060 (9)
C80.0360 (14)0.0516 (16)0.0381 (14)−0.0010 (12)0.0132 (11)−0.0059 (12)
C90.0323 (13)0.0369 (14)0.0517 (16)0.0065 (11)−0.0001 (11)−0.0135 (12)

Geometric parameters (Å, °)

Cu1—O1i1.9226 (15)O1—C11.275 (3)
Cu1—O11.9226 (15)O8—C71.261 (3)
Cu1—O81.9401 (15)C1—C61.431 (3)
Cu1—O8i1.9401 (15)C1—C21.432 (3)
Cu1—O22.659 (2)C2—C31.385 (3)
N1—O31.226 (3)C3—C41.379 (3)
N1—O21.228 (3)C3—H30.9300
N1—C21.455 (3)C4—C51.393 (3)
N2—O51.222 (3)C5—C61.361 (3)
N2—O41.230 (3)C5—H50.9300
N2—C41.452 (3)C7—H70.9300
N3—O61.215 (3)C8—H8A0.9600
N3—O71.215 (3)C8—H8B0.9600
N3—C61.474 (3)C8—H8C0.9600
N4—C71.310 (3)C9—H9A0.9600
N4—C81.455 (3)C9—H9B0.9600
N4—C91.459 (3)C9—H9C0.9600
O1i—Cu1—O1180.0C3—C2—N1116.6 (2)
O1i—Cu1—O890.87 (6)C1—C2—N1120.38 (19)
O1—Cu1—O889.13 (6)C4—C3—C2119.3 (2)
O1i—Cu1—O8i89.13 (6)C4—C3—H3120.4
O1—Cu1—O8i90.87 (6)C2—C3—H3120.4
O8—Cu1—O8i180.000 (1)C3—C4—C5121.5 (2)
O1i—Cu1—O2108.49 (7)C3—C4—N2119.6 (2)
O1—Cu1—O271.51 (7)C5—C4—N2118.9 (2)
O8—Cu1—O278.81 (6)C6—C5—C4117.8 (2)
O8i—Cu1—O2101.19 (6)C6—C5—H5121.1
O3—N1—O2123.1 (2)C4—C5—H5121.1
O3—N1—C2118.1 (2)C5—C6—C1125.5 (2)
O2—N1—C2118.8 (2)C5—C6—N3117.3 (2)
O5—N2—O4123.1 (2)C1—C6—N3117.15 (18)
O5—N2—C4118.4 (2)O8—C7—N4122.7 (2)
O4—N2—C4118.5 (2)O8—C7—H7118.7
O6—N3—O7125.3 (2)N4—C7—H7118.7
O6—N3—C6117.4 (2)N4—C8—H8A109.5
O7—N3—C6117.3 (2)N4—C8—H8B109.5
C7—N4—C8120.7 (2)H8A—C8—H8B109.5
C7—N4—C9121.3 (2)N4—C8—H8C109.5
C8—N4—C9117.95 (19)H8A—C8—H8C109.5
C1—O1—Cu1130.29 (14)H8B—C8—H8C109.5
N1—O2—Cu1108.53 (14)N4—C9—H9A109.5
C7—O8—Cu1126.60 (14)N4—C9—H9B109.5
O1—C1—C6119.4 (2)H9A—C9—H9B109.5
O1—C1—C2127.7 (2)N4—C9—H9C109.5
C6—C1—C2112.79 (19)H9A—C9—H9C109.5
C3—C2—C1123.0 (2)H9B—C9—H9C109.5
O8—Cu1—O1—C127.0 (2)N1—C2—C3—C4178.0 (2)
O8i—Cu1—O1—C1−153.0 (2)C2—C3—C4—C5−0.7 (3)
O2—Cu1—O1—C1−51.52 (19)C2—C3—C4—N2178.4 (2)
O3—N1—O2—Cu1123.9 (2)O5—N2—C4—C3167.6 (2)
C2—N1—O2—Cu1−57.3 (2)O4—N2—C4—C3−14.0 (3)
O1i—Cu1—O2—N1−115.98 (15)O5—N2—C4—C5−13.3 (3)
O1—Cu1—O2—N164.02 (15)O4—N2—C4—C5165.1 (2)
O8—Cu1—O2—N1−28.83 (15)C3—C4—C5—C61.1 (3)
O8i—Cu1—O2—N1151.17 (15)N2—C4—C5—C6−177.9 (2)
O1i—Cu1—O8—C7−8.81 (18)C4—C5—C6—C11.4 (3)
O1—Cu1—O8—C7171.19 (18)C4—C5—C6—N3179.6 (2)
O2—Cu1—O8—C7−117.49 (19)O1—C1—C6—C5174.3 (2)
Cu1—O1—C1—C6−144.15 (17)C2—C1—C6—C5−3.9 (3)
Cu1—O1—C1—C233.8 (3)O1—C1—C6—N3−3.9 (3)
O1—C1—C2—C3−173.8 (2)C2—C1—C6—N3177.93 (19)
C6—C1—C2—C34.3 (3)O6—N3—C6—C5−56.1 (3)
O1—C1—C2—N15.9 (3)O7—N3—C6—C5122.8 (2)
C6—C1—C2—N1−176.03 (19)O6—N3—C6—C1122.2 (2)
O3—N1—C2—C319.5 (3)O7—N3—C6—C1−58.9 (3)
O2—N1—C2—C3−159.3 (2)Cu1—O8—C7—N4173.74 (16)
O3—N1—C2—C1−160.2 (2)C8—N4—C7—O8−4.3 (3)
O2—N1—C2—C121.0 (3)C9—N4—C7—O8178.2 (2)
C1—C2—C3—C4−2.2 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2446).

References

  • Arnaud-Neu, F., Harrowfield, J. M., Michel, S., Skelton, B. W. & White, A. H. (2005). Supramol. Chem.17, 609–615.
  • Dong, W. K., Feng, J. H., Wang, L., Xu, L., Zhao, L., Yang, X. Q. & Yu, T. Z. (2007a). Transition Met. Chem.32, 1101–1105.
  • Dong, W. K., Song, X. Q., Sun, Y. X. & Wu, H. L. (2007b). Chin. J. Inorg. Chem.23, 1809–1811.
  • Dong, W., Yang, R. & Yu, K. (1998). Acta Cryst. C54, 1416–1418.
  • Harrowfield, J. M., Sharma, R. P., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem.51, 735–746.
  • Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995). Aust. J. Chem.48, 1311–1331.
  • Liu, Z. Q., Li, Y. T., Wu, Z. Y. & Song, Y. L. (2008). Inorg. Chim. Acta, 361, 226–232.
  • Marchand, A. P., Hazlewood, A., Huang, Z., Vadlakonda, S. K., Rocha, J. D. R., Power, T. D., Majerski, K. M., Klaic, L., Kragol, G. & Bryan, J. C. (2003). Struct. Chem.14, 279–288.
  • Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153–o1155.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Song, X. Q., Dou, W., Liu, W. S. & Ma, J. X. (2007). Inorg. Chem. Commun.10, 419–422.
  • Talanova, G. G., Elkarim, N. S. A., Talanov, V. S., Hanes, R. E. Jr, Hwang, H.-S., Bartsch, R. A. & Rogers, R. D. (1999). J. Am. Chem. Soc.121, 11281–11290.
  • Venkatasubramanian, K., Joshi, K., Poonia, N. S., Montfort, W. R., Ernst, S. R. & Hackert, M. L. (1985). J. Incl. Phenom. Macro.3, 453–459.
  • Wang, Y. W., Liu, W. S., Tang, N., Tan, M. Y. & Yu, K. B. (2003). J. Mol. Struct.660, 41–47.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography