PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): i4–i5.
Published online 2008 December 20. doi:  10.1107/S1600536808042499
PMCID: PMC2967845

Ammonium iron(III) phosphate(V) fluoride, (NH4)0.5[(NH4)0.375K0.125]FePO4F, with ammonium partially substituted by potassium

Abstract

The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [0An external file that holds a picture, illustration, etc.
Object name is e-65-000i4-efi5.jpg1] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octa­hedra via shared F-atom corners, and are linked by PO4 tetra­hedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H(...)O and two N—H(...)F).

Related literature

For general background, see: Hagerman & Poeppelmeier (1995 [triangle]). For related structures, see: Loiseau et al. (1994 [triangle]) for (NH4)Fe(PO4)F; Loiseau et al. (2000 [triangle]) for (NH4)Ga(PO4)F; Alda et al. (2003 [triangle]) for (NH4)V(PO4)F; Slovokhotova et al. (1991 [triangle]) for KAl(PO4)F; Harrison et al. (1995 [triangle]) for KGa(PO4)F; Matvienko et al. (1979 [triangle]) for KFe(PO4)F; Slobodyanik et al. (1991 [triangle]) for KCr(PO4)F; Tordjman et al. (1974 [triangle]) for K(TiO)(PO4).

Experimental

Crystal data

  • (NH4)0.5[(NH4)0.375K0.125]FePO4F
  • M r = 190.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-000i4-efi6.jpg
  • a = 12.9402 (4) Å
  • b = 6.4382 (2) Å
  • c = 10.6428 (3) Å
  • V = 886.67 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.82 mm−1
  • T = 173 (2) K
  • 0.12 × 0.09 × 0.09 mm

Data collection

  • Oxford Diffraction CCD area-detector diffractometer
  • Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.657, T max = 0.725
  • 5371 measured reflections
  • 2162 independent reflections
  • 1636 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.054
  • S = 0.88
  • 2162 reflections
  • 155 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]) and ATOMS (Dowty, 2004 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042499/fi2066sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042499/fi2066Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Fund of the National Natural Science Foundation of China (No. 40472027).

supplementary crystallographic information

Comment

Compounds of the KTiOPO4 (KTP) group have attracted great attention in the past decades owing to their non-linear optical properties, and became a large family of compositions with formula MM'OXO4 (M = Na, K, Rb, Cs or Tl; M' = Ti, Ge, Sn and X = P or As), where M and M' can be partially replaced by two or more different cations (Hagerman et al., 1995). Tetravalent M' ions can be replaced by trivalent ions such as Fe3+ and Cr3+ with oxygen being substituted simultaneously by fluorine for charge balance. Many examples of fluorophosphates with the KTP-type structure are known, such as (NH4)Fe(PO4)F, (NH4)Ga(PO4)F (Loiseau et al., 1994, 2000 ), and (NH4)V(PO4)F (Alda et al., 2003) in the ammonium series, and KAl(PO4)F (Slovokhotova et al., 1991), KGa(PO4)F (Harrison et al., 1995), KFe(PO4)F (Matvienko et al., 1979), and KCr(PO4)F (Slobodyanik et al., 1991) in the potassium series. However, to the best of our knowledge, sodium fluorophosphate compounds with the KTP-type structure have not been reported to date. Our attempt to synthesize KTP-type sodium fluorophophates failed as well, instead we obtained a solid-solution ammonium fluorophosphate, (NH4)((NH4)0.75K0.25)[Fe2(PO4)2F2], partially substituted by potassium.

The crystal structure of the title compound is built from one-dimensional zigzag ferric octahedral chains 1{[FeO4F2]7-} (see Fig. 1) linked by PO4 tetrahedra via common O-corners, resulting in a three dimensional open framework structure (see Fig.2). The zigzag ferric octahedral chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octahedra via common fluorine-corners, and are along both [011] and [0-11] directions. Each PO4 tetrahedron shares all oxygen corners with four neighboring [FeO4F2] octahedra, and each [FeO4F2] octahedron shares its four oxygen atoms with four PO4 tetrahedra. The negative charge of the framework is compensated by ammonium ions and potassium cations. Two crystallographically independent ammonium sites are found. One resides in the channels along [010], linking to the framework via hydrogen bonds (N-H···O(F)). If this ammonium ion is considered as a normal cation, its coordination number is 8 with an average bond distance of 2.969Å (i.e., to neighboring oxygen and fluorine atoms). The other ammonium site, partially occupied by K+ ions, resides in the channels along [100]. The potassium (ammonium) has a coordination number of 8 with a mean bond distance of 2.882Å. Therefore, the ammonium site in the [010] channels is slightly larger in size than its counterpart in the [100] channels. Consequently, potassium ions preferentially substitute for the ammonium ions in the [100] channels. We suggest that the potassium-to-ammonium ratio in the title compound is controlled by the size effect. It is possible that the size effect in hydrothermally synthesized crystals at lower temperatures is more pronounced than those from a solid state reaction route.

Experimental

Transparent, colorless single crystals of the title compound were synthesized hydrothermally. A mixture of 0.055 g NaBF4, 1.035 g NH4H2PO4, 0.342 g NH4HF2 and 0.048 g Fe2O3 in an approximate molar ratio of Na: NH4: P: Fe = 0.5: 15: 9: 6, was dissolved in 9 ml distilled water while stirring. The prepared solution was transferred to a Teflon-lined stainless steel autoclave (internal volume 30 ml, degree of filling 33%) and held at 453 K for three days under autogenous pressure. Then the autoclave was cooled to room temperature by turning off the power. Products were filtered off, washed with distilled water and dried at room temperature. The presence of potassium in the crystal that was used for single crystal X-ray data collection, was determined by semi-quantitative chemical analysis on an Oxford Instruments Energy Dispersive Spectrometer(EDS)(calcd K: 2.56 %, Obsd K: ~3%). Sodium was not detectable in the crystal by EDS. It is supposed that potassium should be introduced into the sample as impurities in the reagents.

Refinement

There are two possible space groups Pna21(abc) and Pnna(acb) for the KTP-type compounds. Initially, the centrosymmetric Pnna( No.52) space group was selected according to the observed systematic absences. All the framework atoms fit to the centrosymmetric model, except that the ammonium ions resided in the channel are in disordered manner and have abnormally short (1.46 Å) N–N distances. Furthermore, the structural refinement converged to only R1(gt)=0.0783 and wR(all)=0.1813, which are much higher than those from the noncentrosymmetric model (i.e., all anisotropic atoms resulting in R1(gt)=0.031,and wR(all)=0.054 using 155 parameters). Therefore, the noncentrosymmetric space group Pna21(No.33) was chosen to solve and refine the crystal structure as an inversion twin with twin components 0.48 (3)/0.52 (3). During the structure refinement, five constrained parameters were set, one for the constraint of N1 and K1 atoms (i.e., EXYZ and EADP) sharing the same site, the other four for geometrical constraints (i.e., HFIX: fixed bond distance 0.89 Å) of N2–H1, N2–H2, N2–H3, and N2–H4, respectively. Hydrogen coordinate parameters linked to N2 were obtained from difference electron density synthesis and refined by constrained N–H bond distances, their displacement parameters refined via setting to a common variable. Hydrogen atoms linked to N1 were not determined in the present paper.

Figures

Fig. 1.
Unit cell of (NH4)((NH4)0.75K0.25) [Fe2(PO4)2F2] in a view along b. Trans-[FeO4F2], in blue octahedra; cis-[FeO4F2], in pink octahedra; PO4, in red tetrahedra; black spheres: disordered K/NH4; green spheres: NH4.
Fig. 2.
Left: (1). Coordination environment of eight coordinated potassium/ammonium ions(upper); (2). Coordination environment of ammonium ions via hydrogen bonds(down).Right: chains built up of alternate trans-[FeO4F2] and cis-[FeO4F2] octahedra running along ...
Fig. 3.
Coordination environment of Fe and P atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (i) x, 1+y, z; (ii) 1/2-x, 1/2+y, 1/2+z; (iii) -1/2+x, 1/2-y, z; (iv) 1/2+x, 1/2-y, z).

Crystal data

(NH4)0.875K0.125FePO4FF(000) = 752
Mr = 190.49Dx = 2.854 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5001 reflections
a = 12.9402 (4) Åθ = 3.0–32.5°
b = 6.4382 (2) ŵ = 3.82 mm1
c = 10.6428 (3) ÅT = 173 K
V = 886.67 (5) Å3Prism, colorless
Z = 80.12 × 0.09 × 0.09 mm

Data collection

Oxford Diffraction CCD area-detector diffractometer2162 independent reflections
Radiation source: fine-focus sealed tube1636 reflections with I > 2σ(I)
graphiteRint = 0.040
326 images,Δω=1°, Exp time: 40 s. scansθmax = 32.5°, θmin = 2.5°
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2005)h = −19→16
Tmin = 0.657, Tmax = 0.725k = −4→9
5371 measured reflectionsl = −10→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 0.88w = 1/[σ2(Fo2) + (0.0164P)2] where P = (Fo2 + 2Fc2)/3
2162 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.52 e Å3
5 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystal structure of the title compound was refined by a inversion twin matrix so the Flack parameter is equal to zero.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe10.11299 (4)0.48776 (11)0.41908 (14)0.00427 (10)
Fe20.25117 (7)0.25076 (13)0.16711 (14)0.00434 (9)
K10.1161 (2)0.7780 (4)0.1155 (3)0.0243 (9)0.249 (5)
N10.1161 (2)0.7780 (4)0.1155 (3)0.0243 (9)0.75
N20.4008 (3)0.6749 (6)0.3543 (4)0.0094 (7)
P10.18531 (6)0.9964 (2)0.4152 (2)0.00453 (15)
P20.49699 (14)0.17105 (12)0.1701 (2)0.00426 (15)
F10.2694 (3)0.0303 (7)0.0365 (3)0.0067 (8)
F20.2233 (3)0.4707 (7)0.2864 (3)0.0070 (8)
O10.2426 (3)0.4522 (9)0.0261 (4)0.0082 (9)
O20.4023 (3)0.3113 (6)0.1847 (4)0.0075 (8)
O30.2540 (3)0.0417 (9)0.2989 (4)0.0076 (9)
O40.0953 (3)0.1996 (6)0.1474 (4)0.0056 (8)
O50.4803 (4)0.0316 (8)0.0535 (3)0.0095 (9)
O60.1173 (3)0.1868 (5)0.4430 (4)0.0069 (8)
O70.1172 (3)0.8075 (5)0.3867 (4)0.0061 (8)
O80.5104 (3)0.0264 (8)0.2834 (3)0.0057 (9)*
H10.372 (3)0.678 (8)0.427 (3)0.020 (7)*
H20.386 (4)0.580 (7)0.299 (4)0.020 (7)*
H30.385 (4)0.780 (6)0.310 (4)0.020 (7)*
H40.462 (2)0.634 (8)0.365 (5)0.020 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0045 (2)0.0046 (2)0.00376 (18)0.0002 (3)−0.0004 (5)0.0001 (2)
Fe20.00452 (18)0.00472 (17)0.00377 (17)0.00037 (17)0.00040 (18)0.0003 (2)
K10.0311 (16)0.0146 (14)0.0271 (14)−0.0069 (11)0.0077 (11)−0.0039 (10)
N10.0311 (16)0.0146 (14)0.0271 (14)−0.0069 (11)0.0077 (11)−0.0039 (10)
N20.0038 (17)0.0161 (18)0.0083 (17)−0.0023 (15)0.0024 (14)0.0011 (15)
P10.0048 (4)0.0048 (3)0.0039 (4)−0.0008 (6)−0.0017 (9)0.0010 (3)
P20.0041 (4)0.0046 (3)0.0041 (3)−0.0001 (6)−0.0001 (3)−0.0030 (7)
F10.0066 (18)0.0067 (14)0.0070 (16)−0.0007 (14)0.0021 (13)−0.0002 (13)
F20.0077 (18)0.0096 (15)0.0037 (15)−0.0016 (15)0.0019 (13)−0.0036 (13)
F10.0066 (18)0.0067 (14)0.0070 (16)−0.0007 (14)0.0021 (13)−0.0002 (13)
F20.0077 (18)0.0096 (15)0.0037 (15)−0.0016 (15)0.0019 (13)−0.0036 (13)
O10.008 (2)0.0123 (18)0.0045 (19)0.0027 (19)0.0029 (15)0.0042 (17)
O20.005 (2)0.0119 (15)0.005 (2)−0.0012 (15)0.0027 (18)0.0014 (15)
O30.007 (2)0.0091 (18)0.0067 (19)0.0002 (18)0.0000 (14)0.0012 (17)
O40.0036 (19)0.0049 (14)0.008 (2)0.0006 (13)−0.0034 (17)0.0000 (14)
O50.0102 (18)0.0095 (15)0.0089 (16)0.0032 (14)−0.0035 (12)−0.0052 (11)
O60.0095 (18)0.0063 (13)0.005 (2)0.0009 (17)0.0009 (19)0.0017 (13)
O70.0070 (17)0.0053 (13)0.006 (2)0.0005 (16)−0.0013 (19)−0.0034 (12)

Geometric parameters (Å, °)

Fe1—O5i1.893 (4)N2—O7iv2.823 (5)
Fe1—O61.955 (4)N2—O22.956 (6)
Fe1—O8ii1.963 (4)N2—F1i3.079 (6)
Fe1—F1i1.988 (4)N2—O3iii3.088 (7)
Fe1—F22.010 (4)N2—O4i3.124 (6)
Fe1—O72.088 (4)N2—O1i3.159 (7)
Fe2—F21.936 (4)P1—O1i1.531 (5)
Fe2—O31.944 (5)P1—O71.532 (4)
Fe2—O11.986 (5)P1—O6iii1.538 (4)
Fe2—F12.001 (4)P1—O3iii1.551 (5)
Fe2—O22.003 (4)P2—O21.530 (4)
Fe2—O42.055 (3)P2—O81.533 (5)
K1—F1iii2.697 (5)P2—O4v1.539 (4)
K1—O5ii2.739 (6)P2—O51.547 (5)
K1—O4iii2.749 (4)F1—Fe1vi1.988 (4)
K1—O12.825 (6)F1—K1vii2.697 (5)
K1—O72.893 (5)O1—P1vi1.531 (5)
K1—O8ii2.985 (5)O3—P1vii1.551 (5)
K1—F23.025 (5)O3—K1vii3.142 (6)
K1—O3iii3.142 (6)O4—P2ii1.539 (4)
N2—H10.86 (2)O4—K1vii2.749 (4)
N2—H20.87 (2)O5—Fe1vi1.893 (4)
N2—H30.85 (2)O5—K1v2.739 (6)
N2—H40.84 (2)O6—P1vii1.538 (4)
N2—F22.744 (6)O8—Fe1v1.963 (4)
N2—O8iii2.775 (6)O8—K1v2.985 (5)
O5i—Fe1—O693.9 (2)F1iii—K1—O3iii56.70 (12)
O5i—Fe1—O8ii97.58 (10)O5ii—K1—O3iii155.13 (16)
O6—Fe1—O8ii94.0 (2)O4iii—K1—O3iii56.31 (13)
O5i—Fe1—F1i89.56 (19)O1—K1—O3iii106.34 (16)
O6—Fe1—F1i91.87 (18)O7—K1—O3iii48.85 (13)
O8ii—Fe1—F1i170.45 (17)O8ii—K1—O3iii104.06 (15)
O5i—Fe1—F2172.51 (19)F2—K1—O3iii73.71 (16)
O6—Fe1—F290.97 (18)H1—N2—H2122 (5)
O8ii—Fe1—F287.76 (17)H1—N2—H3112 (5)
F1i—Fe1—F284.57 (10)H2—N2—H398 (5)
O5i—Fe1—O789.7 (2)H1—N2—H4107 (5)
O6—Fe1—O7176.27 (15)H2—N2—H495 (5)
O8ii—Fe1—O786.68 (19)H3—N2—H4124 (5)
F1i—Fe1—O787.03 (17)O1i—P1—O7110.8 (3)
F2—Fe1—O785.37 (17)O1i—P1—O6iii110.4 (3)
F2—Fe2—O392.1 (2)O7—P1—O6iii109.98 (13)
F2—Fe2—O190.43 (16)O1i—P1—O3iii107.56 (14)
O3—Fe2—O1176.3 (3)O7—P1—O3iii108.7 (3)
F2—Fe2—F1175.3 (2)O6iii—P1—O3iii109.4 (3)
O3—Fe2—F190.44 (16)O2—P2—O8111.7 (3)
O1—Fe2—F186.9 (2)O2—P2—O4v111.00 (12)
F2—Fe2—O288.75 (18)O8—P2—O4v111.0 (2)
O3—Fe2—O292.82 (18)O2—P2—O5108.2 (3)
O1—Fe2—O289.87 (19)O8—P2—O5107.11 (13)
F1—Fe2—O295.06 (17)O4v—P2—O5107.7 (3)
F2—Fe2—O490.05 (17)Fe1vi—F1—Fe2128.6 (2)
O3—Fe2—O488.90 (18)Fe1vi—F1—K1vii132.5 (2)
O1—Fe2—O488.46 (18)Fe2—F1—K1vii97.14 (16)
F1—Fe2—O486.05 (18)Fe2—F2—Fe1129.3 (2)
O2—Fe2—O4177.9 (2)Fe2—F2—K199.74 (15)
F1iii—K1—O5ii146.65 (16)Fe1—F2—K193.52 (16)
F1iii—K1—O4iii61.07 (13)P1vi—O1—Fe2132.1 (3)
O5ii—K1—O4iii133.26 (16)P1vi—O1—K1118.3 (3)
F1iii—K1—O185.20 (17)Fe2—O1—K1105.24 (19)
O5ii—K1—O175.57 (15)P2—O2—Fe2131.1 (2)
O4iii—K1—O1146.27 (16)P1vii—O3—Fe2134.0 (3)
F1iii—K1—O7105.53 (14)P1vii—O3—K1vii94.0 (2)
O5ii—K1—O7106.92 (14)Fe2—O3—K1vii85.15 (16)
O4iii—K1—O779.17 (13)P2ii—O4—Fe2135.1 (2)
O1—K1—O7112.44 (15)P2ii—O4—K1vii129.4 (2)
F1iii—K1—O8ii156.77 (16)Fe2—O4—K1vii94.26 (14)
O5ii—K1—O8ii51.09 (8)P2—O5—Fe1vi141.5 (3)
O4iii—K1—O8ii121.95 (15)P2—O5—K1v98.0 (2)
O1—K1—O8ii88.83 (16)Fe1vi—O5—K1v118.9 (2)
O7—K1—O8ii56.47 (12)P1vii—O6—Fe1141.4 (3)
F1iii—K1—F2104.14 (16)P1—O7—Fe1139.9 (2)
O5ii—K1—F287.88 (16)P1—O7—K1104.6 (2)
O4iii—K1—F2128.06 (15)Fe1—O7—K195.74 (14)
O1—K1—F256.72 (12)P2—O8—Fe1v133.1 (3)
O7—K1—F255.97 (11)P2—O8—K1v88.85 (19)
O8ii—K1—F254.57 (13)Fe1v—O8—K1v95.74 (18)

Symmetry codes: (i) −x+1/2, y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z; (iii) x, y+1, z; (iv) x+1/2, −y+3/2, z; (v) x+1/2, −y+1/2, z; (vi) −x+1/2, y−1/2, z−1/2; (vii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1···F1i0.86 (4)2.37 (5)3.079 (6)140 (4)
N2—H1···O4i0.86 (4)2.39 (3)3.124 (6)144 (4)
N2—H1···O1i0.86 (4)2.54 (5)3.159 (7)130 (4)
N2—H2···O20.87 (4)2.13 (4)2.956 (6)159 (4)
N2—H2···F20.87 (4)2.22 (5)2.744 (6)118 (4)
N2—H3···O8iii0.85 (4)2.29 (5)2.775 (6)117 (4)
N2—H3···O3iii0.85 (4)2.39 (5)3.088 (7)139 (4)
N2—H4···O7iv0.84 (3)2.06 (3)2.823 (5)151 (4)

Symmetry codes: (i) −x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2066).

References

  • Alda, E., Bazab, B., Mesa, J. L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (2003). J. Solid State Chem.173, 101–108.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dowty, E. (2004). ATOMS Shape Software, Kingsport, Tennessee, USA.
  • Hagerman, M. E. & Poeppelmeier, K. R. (1995). Chem. Mater.7, 602–621.
  • Harrison, W. T. A., Phillips, M. L. F. & Stucky, G. D. (1995). Chem. Mater.7, 1849–1856.
  • Loiseau, T., Calage, Y., Lacorre, P. & Ferey, G. (1994). J. Solid State Chem.111, 390–396.
  • Loiseau, T., Paulet, C., Simon, N., Munch, V., Taulelle, F. & Ferey, G. (2000). Chem. Mater.12, 1393–1399.
  • Matvienko, E. N., Yakubovich, O. V., Simonov, M. A. & Belov, N. V. (1979). Dokl. Akad. Nauk SSSR, 246, 875–878.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slobodyanik, N. S., Nagornyi, P. G., Kornienko, Z. I. & Kapshuk, A. A. (1991). Zh. Neorg. Khim.36, 1390–1392.
  • Slovokhotova, O. L., Ilyushin, G. D., Triodina, N. S., Mel’nikov, O. K., Dem’yanets, L. N., Gerr, R. G. & Tsirel’son, V. G. (1991). Zh. Strukt. Khim.32, 103–109.
  • Tordjman, I., Masse, R. & Guitel, J. C. (1974). Z. Kristallogr.139, 103–115.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography