PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): i3.
Published online 2008 December 17. doi:  10.1107/S1600536808042384
PMCID: PMC2967844

Dicaesium magnesium bis­(dihydrogen phosphate(V)) dihydrate

Abstract

The title compound, Cs2Mg(H2P2O7)2·2H2O, is isostructural with the related known isoformular phosphates. The crystal framework consists of corner-sharing MgO6 and H2P2O7 polyhedra, leading to tunnels parallel to the b-axis direction in which Cs+ ions are located. The H2P2O7 unit shows a bent eclipsed conformation. The Mg2+ ion lies on an inversion center. The water molecules form hydrogen bonds to O atoms of two different dihydrogenphosphate ions, which are further hydrogen bonded to symmetry-equivalent dihydrogenphosphate ions.

Related literature

For isostructural phosphates, see: Capitelli et al. (2004 [triangle]), (NH4)2Mn(H2P2O7)2·2H2O; Essehli et al. (2005a [triangle]), (NH4)2Zn(H2P2O7)2·2H2O; Essehli et al. (2005b [triangle]), (NH4)2Ni(H2P2O7)2·2H2O; Essehli et al. (2005c [triangle]), (NH4)2Co(H2P2O7)2·2H2O; Tahiri et al. (2004 [triangle]), K2Ni(H2P2O7)2·2H2O; Tahiri et al. (2003 [triangle]), K2Zn(H2P2O7)2·2H2O; Harcharras et al. (2003 [triangle]), K2Mg(H2P2O7)2·2H2O. For the biological activity of inorganic acidic diphos­phates containing HP2O7 3− or H2P2O7 2− anions, see: Andreeva et al. (2001 [triangle]).

Experimental

Crystal data

  • Cs2Mg(H2P2O7)2·2H2O
  • M r = 678.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-000i3-efi1.jpg
  • a = 7.0935 (15) Å
  • b = 7.4606 (15) Å
  • c = 8.0230 (15) Å
  • α = 83.776 (16)°
  • β = 68.558 (15)°
  • γ = 87.850 (17)°
  • V = 392.87 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 5.17 mm−1
  • T = 173 (2) K
  • 0.19 × 0.15 × 0.08 mm

Data collection

  • Stoe IPDSII two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2003 [triangle]; Blessing, 1995 [triangle]) T min = 0.440, T max = 0.683
  • 3316 measured reflections
  • 1420 independent reflections
  • 1245 reflections with I > 2σ(I)
  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.125
  • S = 1.02
  • 1420 reflections
  • 115 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.00 e Å−3
  • Δρmin = −2.73 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042384/br2088sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042384/br2088Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Inorganic acidic diphosphates containing HP2O7 or H2P2O7 hold important biochemical activities, such as inhibitors of human immunodeficiency enzymes as reported by Andreeva et al. (2001). In the framework of our systematic research on these phosphates, we report on the new compound Cs2Mg(H2P2O7)2.2H2O. Detailed studies on structure determinations of such phosphates are available in related crystallography literature.

The crystal packing of Cs2Mg(H2P2O7)2.2H2O is a 3D network made upon edges sharing [MgO6] octahedra and dihydrogendiphosphate [H2P2O7]. These delimite tunnels along b direction, where Cs+ ions are located. A projection onto ac-plan is depicted on Fig. 1.

Mg2+ cation sites are on inversion center. It is coordinated by four O atoms from two bidendate [H2P2O7] groups and two remaining O atoms from water molecule (Fig. 2).

H2P2O7 shows bent eclipsed conformation. Distances and angles in [MgO6] and [H2P2O7] are as usual as in related phosphates structures. The [MgO6] are isolated in the structure, with an Mg-Mg distance over 7 Å.

Experimental

Crystals of Cs2Mn(H2P2O7)2.2H2O were grown at room temperature by slow evaporation from water-ethanol (80/20) of aqueous solution containing a stoichiometric the mixture : MgCl2.6H2O (0.231mg, 1mmol), Cs2CO3 (0.24mg, 1mmol), and K4P2O7 (0.5mg, 1mmol). The solution was stirred for two hours at leaved to stand at room temperature. Crystals suitable for X-ray analysis were formed after few days.

Refinement

All H atoms were located in a difference map. The water H atoms were refined with the O-H bonds restrained to 0.84 (1)Å and the H···H distances restrained to 1.4 (1)Å and with fixed individual displacement parameters [U(H) = 1.2 Ueq(O)]. The H atoms of the hydroxyl groups bonded to P were refined using a riding model with O-H = 0.84Å, U(H) = 1.2 Ueq(O) and P-O-H = 109.5 °.

Figures

Fig. 1.
Crystal structure of Cs2Mn(H2P2O7)2.2H2O viewed along b direction.
Fig. 2.
Mg coordination in Cs2Mn(H2P2O7)2.2H2O. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) - x,- y, - z.

Crystal data

Cs2Mg(H2P2O7)2·2H2OZ = 1
Mr = 678.07F(000) = 318
Triclinic, P1Dx = 2.866 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0935 (15) ÅCell parameters from 3316 reflections
b = 7.4606 (15) Åθ = 3.7–25.5°
c = 8.0230 (15) ŵ = 5.17 mm1
α = 83.776 (16)°T = 173 K
β = 68.558 (15)°Plate, colourless
γ = 87.850 (17)°0.19 × 0.15 × 0.08 mm
V = 392.87 (14) Å3

Data collection

Stoe IPDSII two-circle diffractometer1420 independent reflections
Radiation source: fine-focus sealed tube1245 reflections with I > 2σ(I)
graphiteRint = 0.082
ω scansθmax = 25.3°, θmin = 3.7°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)h = −8→8
Tmin = 0.440, Tmax = 0.683k = −8→8
3316 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125w = 1/[σ2(Fo2) + (0.084P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1420 reflectionsΔρmax = 2.00 e Å3
115 parametersΔρmin = −2.73 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cs10.09044 (7)0.70386 (7)0.27841 (6)0.0186 (3)
Mg10.50000.50000.50000.0137 (8)
O1W0.4211 (9)0.2941 (8)0.7146 (7)0.0195 (14)
H1WA0.413 (14)0.319 (13)0.817 (6)0.023*
H1WB0.355 (13)0.201 (8)0.719 (12)0.023*
P10.3736 (3)0.2528 (3)0.2388 (3)0.0129 (5)
P20.7759 (3)0.1985 (3)0.2518 (3)0.0130 (5)
O10.3041 (8)0.3164 (9)0.0855 (8)0.0190 (13)
O20.3344 (8)0.3767 (8)0.3829 (7)0.0151 (12)
O30.2791 (9)0.0628 (8)0.3238 (8)0.0181 (13)
H30.28280.04170.42760.022*
O40.6144 (8)0.2214 (8)0.1485 (7)0.0162 (12)
O50.7572 (8)0.3505 (8)0.3636 (7)0.0155 (12)
O60.7434 (9)0.0105 (8)0.3514 (8)0.0216 (14)
O70.9737 (9)0.2074 (9)0.0826 (8)0.0201 (14)
H71.06550.25650.10460.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cs10.0193 (4)0.0231 (4)0.0164 (4)0.0023 (2)−0.0101 (2)−0.0027 (2)
Mg10.0124 (18)0.018 (2)0.0124 (18)0.0022 (15)−0.0069 (15)−0.0011 (15)
O1W0.030 (4)0.022 (3)0.010 (3)−0.003 (3)−0.012 (3)−0.002 (2)
P10.0121 (10)0.0171 (11)0.0121 (10)0.0017 (8)−0.0073 (8)−0.0031 (8)
P20.0131 (10)0.0190 (11)0.0104 (9)0.0015 (8)−0.0080 (8)−0.0035 (8)
O10.016 (3)0.029 (3)0.017 (3)−0.001 (2)−0.012 (2)−0.002 (3)
O20.013 (3)0.021 (3)0.017 (3)0.000 (2)−0.012 (2)−0.006 (2)
O30.022 (3)0.017 (3)0.021 (3)−0.005 (2)−0.012 (3)−0.005 (2)
O40.013 (3)0.027 (3)0.014 (3)0.003 (2)−0.011 (2)−0.005 (2)
O50.014 (3)0.025 (3)0.012 (3)0.002 (2)−0.008 (2)−0.009 (2)
O60.027 (3)0.022 (3)0.017 (3)−0.002 (3)−0.010 (3)−0.001 (2)
O70.012 (3)0.037 (4)0.014 (3)−0.001 (3)−0.006 (2)−0.008 (3)

Geometric parameters (Å, °)

Cs1—O7i3.092 (6)O1W—Cs1iv3.608 (6)
Cs1—O3ii3.151 (6)O1W—H1WA0.839 (10)
Cs1—O23.155 (6)O1W—H1WB0.839 (10)
Cs1—O6iii3.233 (7)P1—O21.498 (6)
Cs1—O2iv3.259 (6)P1—O11.510 (6)
Cs1—O4i3.295 (5)P1—O31.566 (6)
Cs1—O5v3.401 (5)P1—O41.612 (6)
Cs1—O5vi3.450 (6)P1—Cs1iv4.100 (2)
Cs1—O13.461 (6)P2—O51.493 (6)
Cs1—O1Wv3.486 (6)P2—O61.518 (6)
Cs1—O1Wiv3.608 (6)P2—O71.553 (6)
Cs1—P13.836 (2)P2—O41.637 (5)
Mg1—O22.046 (5)P2—Cs1i3.995 (2)
Mg1—O2v2.046 (5)O2—Cs1iv3.259 (6)
Mg1—O5v2.103 (6)O3—Cs1viii3.151 (6)
Mg1—O52.103 (6)O3—H30.8400
Mg1—O1Wv2.103 (5)O4—Cs1i3.295 (5)
Mg1—O1W2.103 (5)O5—Cs1v3.401 (5)
Mg1—Cs1v4.0953 (9)O5—Cs1vii3.450 (6)
Mg1—Cs1vii4.1789 (11)O6—Cs1ix3.233 (6)
Mg1—Cs1iv4.1790 (11)O7—Cs1i3.092 (6)
O1W—Cs1v3.486 (6)O7—H70.8400
O7i—Cs1—O3ii103.03 (16)O5—Mg1—Cs1v56.01 (15)
O7i—Cs1—O2127.15 (16)O1Wv—Mg1—Cs1v121.65 (16)
O3ii—Cs1—O2108.02 (15)O1W—Mg1—Cs1v58.35 (16)
O7i—Cs1—O6iii74.51 (15)O2—Mg1—Cs148.97 (16)
O3ii—Cs1—O6iii72.09 (16)O2v—Mg1—Cs1131.03 (16)
O2—Cs1—O6iii155.89 (14)O5v—Mg1—Cs156.01 (15)
O7i—Cs1—O2iv112.39 (14)O5—Mg1—Cs1123.99 (15)
O3ii—Cs1—O2iv108.69 (15)O1Wv—Mg1—Cs158.35 (16)
O2—Cs1—O2iv96.77 (14)O1W—Mg1—Cs1121.65 (16)
O6iii—Cs1—O2iv61.80 (15)Cs1v—Mg1—Cs1180.000 (7)
O7i—Cs1—O4i44.14 (14)O2—Mg1—Cs1vii130.16 (15)
O3ii—Cs1—O4i84.93 (15)O2v—Mg1—Cs1vii49.84 (16)
O2—Cs1—O4i97.36 (14)O5v—Mg1—Cs1vii124.62 (16)
O6iii—Cs1—O4i106.59 (14)O5—Mg1—Cs1vii55.38 (16)
O2iv—Cs1—O4i156.16 (13)O1Wv—Mg1—Cs1vii59.70 (16)
O7i—Cs1—O5v169.36 (14)O1W—Mg1—Cs1vii120.30 (16)
O3ii—Cs1—O5v68.88 (15)Cs1v—Mg1—Cs1vii61.976 (19)
O2—Cs1—O5v52.76 (15)Cs1—Mg1—Cs1vii118.02 (2)
O6iii—Cs1—O5v108.24 (14)O2—Mg1—Cs1iv49.84 (16)
O2iv—Cs1—O5v77.41 (13)O2v—Mg1—Cs1iv130.16 (16)
O4i—Cs1—O5v126.34 (13)O5v—Mg1—Cs1iv55.38 (16)
O7i—Cs1—O5vi86.75 (14)O5—Mg1—Cs1iv124.62 (16)
O3ii—Cs1—O5vi160.22 (15)O1Wv—Mg1—Cs1iv120.30 (16)
O2—Cs1—O5vi78.07 (14)O1W—Mg1—Cs1iv59.70 (16)
O6iii—Cs1—O5vi94.58 (15)Cs1v—Mg1—Cs1iv118.024 (19)
O2iv—Cs1—O5vi51.54 (14)Cs1—Mg1—Cs1iv61.98 (2)
O4i—Cs1—O5vi113.40 (13)Cs1vii—Mg1—Cs1iv180.0
O5v—Cs1—O5vi103.09 (12)Mg1—O1W—Cs1v90.75 (19)
O7i—Cs1—O182.39 (15)Mg1—O1W—Cs1iv90.08 (18)
O3ii—Cs1—O1132.65 (15)Cs1v—O1W—Cs1iv178.20 (18)
O2—Cs1—O145.25 (13)Mg1—O1W—H1WA119 (7)
O6iii—Cs1—O1150.16 (14)Cs1v—O1W—H1WA72 (7)
O2iv—Cs1—O1112.32 (15)Cs1iv—O1W—H1WA106 (7)
O4i—Cs1—O166.40 (15)Mg1—O1W—H1WB124 (6)
O5v—Cs1—O197.95 (14)Cs1v—O1W—H1WB125 (7)
O5vi—Cs1—O165.07 (13)Cs1iv—O1W—H1WB55 (7)
O7i—Cs1—O1Wv119.58 (14)H1WA—O1W—H1WB113 (8)
O3ii—Cs1—O1Wv59.65 (15)O2—P1—O1116.7 (4)
O2—Cs1—O1Wv51.99 (14)O2—P1—O3110.1 (3)
O6iii—Cs1—O1Wv131.44 (15)O1—P1—O3108.9 (3)
O2iv—Cs1—O1Wv128.02 (13)O2—P1—O4108.7 (3)
O4i—Cs1—O1Wv75.64 (13)O1—P1—O4106.0 (3)
O5v—Cs1—O1Wv50.71 (13)O3—P1—O4106.0 (3)
O5vi—Cs1—O1Wv130.02 (14)O2—P1—Cs152.5 (2)
O1—Cs1—O1Wv76.60 (14)O1—P1—Cs164.3 (3)
O7i—Cs1—O1Wiv61.98 (13)O3—P1—Cs1126.4 (2)
O3ii—Cs1—O1Wiv119.49 (15)O4—P1—Cs1127.4 (2)
O2—Cs1—O1Wiv128.11 (13)O2—P1—Cs1iv46.6 (2)
O6iii—Cs1—O1Wiv47.53 (15)O1—P1—Cs1iv110.0 (2)
O2iv—Cs1—O1Wiv50.41 (12)O3—P1—Cs1iv69.8 (2)
O4i—Cs1—O1Wiv105.98 (12)O4—P1—Cs1iv143.1 (2)
O5v—Cs1—O1Wiv127.65 (13)Cs1—P1—Cs1iv64.84 (4)
O5vi—Cs1—O1Wiv50.22 (14)O5—P2—O6116.1 (3)
O1—Cs1—O1Wiv104.72 (14)O5—P2—O7112.9 (3)
O1Wv—Cs1—O1Wiv178.20 (18)O6—P2—O7110.9 (4)
O7i—Cs1—P1105.41 (12)O5—P2—O4110.8 (3)
O3ii—Cs1—P1122.63 (12)O6—P2—O4106.4 (3)
O2—Cs1—P122.12 (11)O7—P2—O498.0 (3)
O6iii—Cs1—P1164.02 (12)O5—P2—Cs1i120.3 (2)
O2iv—Cs1—P1104.76 (11)O6—P2—Cs1i123.5 (3)
O4i—Cs1—P182.42 (11)O4—P2—Cs1i53.5 (2)
O5v—Cs1—P174.87 (11)P1—O1—Cs192.5 (3)
O5vi—Cs1—P169.55 (10)P1—O2—Mg1137.3 (4)
O1—Cs1—P123.15 (9)P1—O2—Cs1105.4 (3)
O1Wv—Cs1—P163.00 (11)Mg1—O2—Cs1101.8 (2)
O1Wiv—Cs1—P1117.80 (10)P1—O2—Cs1iv113.8 (3)
O2—Mg1—O2v179.999 (1)Mg1—O2—Cs1iv101.5 (2)
O2—Mg1—O5v89.5 (2)Cs1—O2—Cs1iv83.23 (14)
O2v—Mg1—O5v90.5 (2)P1—O3—Cs1viii148.3 (3)
O2—Mg1—O590.5 (2)P1—O3—H3109.5
O2v—Mg1—O589.5 (2)Cs1viii—O3—H3102.2
O5v—Mg1—O5179.999 (1)P1—O4—P2126.8 (4)
O2—Mg1—O1Wv89.7 (2)P1—O4—Cs1i128.3 (3)
O2v—Mg1—O1Wv90.3 (2)P2—O4—Cs1i103.0 (2)
O5v—Mg1—O1Wv89.1 (2)P2—O5—Mg1129.5 (3)
O5—Mg1—O1Wv90.9 (2)P2—O5—Cs1v120.1 (3)
O2—Mg1—O1W90.3 (2)Mg1—O5—Cs1v93.14 (17)
O2v—Mg1—O1W89.7 (2)P2—O5—Cs1vii127.4 (3)
O5v—Mg1—O1W90.9 (2)Mg1—O5—Cs1vii94.5 (2)
O5—Mg1—O1W89.1 (2)Cs1v—O5—Cs1vii76.91 (12)
O1Wv—Mg1—O1W180.0 (3)P2—O6—Cs1ix123.7 (3)
O2—Mg1—Cs1v131.03 (16)P2—O7—Cs1i114.5 (3)
O2v—Mg1—Cs1v48.97 (16)P2—O7—H7109.5
O5v—Mg1—Cs1v123.99 (15)Cs1i—O7—H7122.0

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y+1, z; (iii) x−1, y+1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) x+1, y, z; (viii) x, y−1, z; (ix) x+1, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1x0.84 (1)2.01 (4)2.804 (8)158 (9)
O1W—H1WB···O6xi0.84 (1)1.97 (3)2.778 (9)162 (9)
O3—H3···O6xi0.841.722.551 (8)172
O7—H7···O1vii0.841.712.518 (8)159

Symmetry codes: (x) x, y, z+1; (xi) −x+1, −y, −z+1; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2088).

References

  • Andreeva, O. I., Efimtseva, E. V., Padyukova, N. S., Kochetkov, S. N., Mikhailov, S. N., Dixon, H. B. F. & Karpeisky, M. Y. (2001). Mol. Biol.35, 717–729.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Capitelli, F., Brouzi, K., Harcharras, M., Ennaciri, A., Moliterni, A. G. G. & Bertolasi, V. (2004). Z. Kristallogr. 219, 93–98.
  • Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005a). Acta Cryst. E61, i32–i34.
  • Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005b). Acta Cryst. E61, i61–i63.
  • Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005c). Acta Cryst. E61, i64–i66.
  • Harcharras, M., Capitelli, F., Ennaciri, A., Brouzi, K., Moliterni, A. G. G., Mattei, G. & Bertolasi, V. (2003). J. Solid State Chem.176, 27–32.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Tahiri, A. A., Messouri, I., Lachkar, M., Zavalij, P. Y., Glaum, R., El Bali, B. & Rachid, O. (2004). Acta Cryst. E60, i3–i5.
  • Tahiri, A. A., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i50–i52.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography