PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1392.
Published online 2008 July 5. doi:  10.1107/S1600536808019156
PMCID: PMC2962253

Methyl 2-acetonyl-4-hydr­oxy-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

Abstract

In the mol­ecule of the title compound, C13H13NO6S, the thia­zine ring adopts a distorted sofa conformation. The enolic H atom is involved in intra­molecular O—H(...)O hydrogen bonding besides the weaker C—H(...)O=S and C—H(...)O=C inter­actions.

Related literature

For related literature, see: Ahmad et al. (2008 [triangle]); Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle], 2007 [triangle]); Bihovsky et al. (2004 [triangle]); Braun (1923 [triangle]); Fabiola et al. (1998 [triangle]); Kojić-Prodić & Rużić-Toroš (1982 [triangle]); Lombardino et al. (1971 [triangle]); Turck et al. (1996 [triangle]); Weast et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1392-scheme1.jpg

Experimental

Crystal data

  • C13H13NO6S
  • M r = 311.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1392-efi1.jpg
  • a = 11.7982 (3) Å
  • b = 8.7206 (2) Å
  • c = 13.2474 (4) Å
  • V = 1362.99 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 120 (2) K
  • 0.50 × 0.30 × 0.15 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.879, T max = 0.961
  • 12553 measured reflections
  • 3095 independent reflections
  • 2849 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 1.13
  • 3095 reflections
  • 194 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.64 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1466 Friedel pairs
  • Flack parameter: 0.00 (8)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019156/bt2729sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019156/bt2729Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for the provision of a research grant for the project.

supplementary crystallographic information

Comment

Benzothiazine 1,1-dioxides are known to possess a versatile range of biological activities and have been synthesized continuously since the very first synthesis in 1923 (Braun, 1923). Among these, Piroxicam (Lombardino et al.,1971; Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic and anti-inflammatory activities and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Some of the 3,4-dihydro-1,2-benzothiazine-3-carboxylate 1,1-dioxide α-ketomide and P(2)—P(3) peptide mimetic aldehyde compounds act as potent calpain I inhibitors (Bihovsky et al., 2004) while 1,2-benzothiazin-3-yl-quinazolin-4(3H)-ones possess antibacterial properties (Zia-ur-Rehman et al., 2006). In continuation of our ongoing work (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008), we herein report the synthesis and crystal structure of the title compound.

In this paper, the structure of the title compound (I) is reported (Scheme and figure 1). The thiazine ring, involving two double bonds, exhibits a sofa conformation; with S1/C1/C6/C7 relatively planar and N1 showing significant departure from plane due to its pyramidal geometry. The enolic hydrogen on O3 is involved in intramolecular hydrogen bonding [O3—H3···O4] with the carbonyl oxygen at C4 giving rise to a six-membered hydrogen bond ring (Table 1). The C1—S1 [1.757 (2)Å] bond is shorter than a normal C—S single bond (1.81–2.55Å) (Weast et al., 1984) due to partial double bond character and is in agreement with similar molecules (Kojić-Prodić & Ružić-Toroŝ, 1982; Fabiola et al., 1998]. Each molecule is further linked to neighbouring molecules via weaker C—H···O=S and C—H···O=C interactions (Table 1).

Experimental

A mixture of mono chloroacetone (1.94 ml; 23.5 mmoles), methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (5.0 g,19.6 mmoles), dimethyl formamide (10.0 ml) and anhydrous sodium carbonate (4.2 g,39.2 mmoles) was stirred under nitrogen atmosphere for 3.0 h at 120 oC.The contents were then cooled to room temperature and poured over crushed ice.Title compound (I) was precipitated as white precipitates which were washed with excess of water, filtered and dried. Yield: 4.39 g; 72%; M.p. 455 K. Crystals were grown by slow evaporation of solution of (I) in Chloroform-Methanol (1:1) mixture.

Refinement

All hydrogen atoms were identified in the difference map and subsequently fixed in ideal positions and treated as riding on their parent atoms. In the case of the methyl and hydroxyl H atoms the torsion angles were freely refined (three additional parameters). The following distances were used: Methyl C—H 0.98 Å. ° Methylene C—H 0.99 Å. ° Aromatic C—H 0.95 Å. ° Hydroxyl O—H 0.84 Å. U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound showing the intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Perspective view of the three-dimensional crystal packing showing hydrogen-bonds and other intermolecular interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C13H13NO6SF000 = 648
Mr = 311.30Dx = 1.517 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6916 reflections
a = 11.7982 (3) Åθ = 2.9–27.5º
b = 8.7206 (2) ŵ = 0.27 mm1
c = 13.2474 (4) ÅT = 120 (2) K
V = 1362.99 (6) Å3Block, colourless
Z = 40.50 × 0.30 × 0.15 mm

Data collection

Bruker–Nonius KappaCCD diffractometer3095 independent reflections
Radiation source: Bruker Nonius FR591 Rotating Anode2849 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5º
T = 120(2) Kθmin = 3.1º
[var phi] and ω scansh = −15→15
Absorption correction: multi-scan(SADABS; Sheldrick, 2007)k = −11→11
Tmin = 0.879, Tmax = 0.961l = −17→17
12553 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0621P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.57 e Å3
3095 reflectionsΔρmin = −0.64 e Å3
194 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.067 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1466 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.00 (8)

Special details

Experimental. SADABS was used to perform the Absorption correction Estimated minimum and maximum transmission: 0.6723 0.7456 The given Tmin and Tmax were generated using the SHELX SIZE command
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.12520 (4)0.72682 (5)0.71113 (5)0.01779 (15)
O10.14000 (12)0.85887 (19)0.64793 (13)0.0249 (4)
O20.21431 (12)0.61542 (17)0.71678 (14)0.0255 (4)
O3−0.19773 (12)0.91805 (17)0.77253 (12)0.0204 (3)
H3−0.24400.89850.72610.031*
O4−0.27020 (12)0.78295 (17)0.61171 (13)0.0229 (4)
O5−0.15104 (13)0.62248 (18)0.53092 (12)0.0234 (4)
O6−0.03227 (14)0.48788 (19)0.85565 (13)0.0287 (4)
N10.00988 (15)0.63873 (19)0.67500 (15)0.0172 (4)
C10.08889 (18)0.7943 (2)0.83187 (17)0.0173 (4)
C20.16859 (19)0.8042 (3)0.90839 (18)0.0231 (5)
H20.24360.76750.89840.028*
C30.1371 (2)0.8685 (3)0.9994 (2)0.0258 (5)
H3A0.19090.87651.05250.031*
C40.0269 (2)0.9218 (3)1.01423 (18)0.0244 (5)
H40.00610.96591.07710.029*
C5−0.05253 (19)0.9105 (2)0.93717 (17)0.0195 (4)
H5−0.12740.94730.94760.023*
C6−0.02314 (17)0.8457 (2)0.84476 (17)0.0169 (4)
C7−0.10643 (17)0.8267 (2)0.76334 (17)0.0156 (4)
C8−0.09225 (18)0.7266 (2)0.68505 (15)0.0155 (4)
C9−0.17931 (18)0.7142 (2)0.60656 (16)0.0172 (4)
C10−0.2356 (2)0.6047 (3)0.4522 (2)0.0327 (6)
H10A−0.30740.57160.48220.049*
H10B−0.20980.52750.40350.049*
H10C−0.24650.70290.41760.049*
C110.00404 (19)0.4701 (2)0.67907 (18)0.0202 (4)
H11A0.07630.42770.65320.024*
H11B−0.05720.43500.63350.024*
C12−0.01724 (18)0.4058 (2)0.78301 (19)0.0216 (5)
C13−0.0175 (2)0.2338 (3)0.7899 (2)0.0329 (6)
H13A−0.01540.20280.86090.049*
H13B0.04920.19280.75490.049*
H13C−0.08640.19350.75820.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0125 (2)0.0212 (2)0.0196 (2)0.00081 (16)0.0010 (2)0.0031 (3)
O10.0198 (8)0.0285 (8)0.0263 (10)−0.0038 (6)0.0031 (6)0.0092 (7)
O20.0170 (7)0.0302 (8)0.0293 (9)0.0066 (5)−0.0005 (7)−0.0005 (8)
O30.0159 (7)0.0222 (7)0.0232 (8)0.0050 (5)−0.0035 (6)−0.0042 (7)
O40.0176 (8)0.0256 (7)0.0256 (8)0.0052 (6)−0.0034 (6)−0.0057 (7)
O50.0237 (9)0.0267 (9)0.0198 (8)0.0058 (6)−0.0048 (6)−0.0056 (7)
O60.0361 (10)0.0257 (8)0.0243 (9)0.0012 (7)0.0043 (7)0.0048 (7)
N10.0148 (9)0.0162 (7)0.0205 (9)0.0014 (6)0.0018 (7)0.0003 (7)
C10.0173 (10)0.0157 (8)0.0190 (10)−0.0019 (7)0.0016 (9)0.0019 (9)
C20.0164 (11)0.0253 (10)0.0276 (12)−0.0014 (8)−0.0053 (9)0.0016 (10)
C30.0267 (13)0.0267 (12)0.0241 (12)−0.0015 (9)−0.0110 (9)0.0007 (10)
C40.0310 (13)0.0232 (10)0.0191 (11)0.0003 (9)−0.0031 (9)−0.0014 (9)
C50.0205 (11)0.0158 (9)0.0222 (10)−0.0019 (7)0.0009 (9)0.0011 (9)
C60.0181 (11)0.0119 (8)0.0208 (11)−0.0029 (7)−0.0013 (8)0.0036 (8)
C70.0129 (9)0.0150 (9)0.0188 (10)−0.0008 (7)0.0016 (8)0.0030 (8)
C80.0137 (9)0.0141 (9)0.0188 (11)−0.0009 (7)0.0004 (8)0.0021 (8)
C90.0161 (10)0.0187 (9)0.0168 (10)−0.0009 (8)0.0005 (8)0.0004 (8)
C100.0323 (14)0.0408 (12)0.0250 (12)0.0121 (11)−0.0117 (10)−0.0120 (12)
C110.0205 (10)0.0168 (9)0.0234 (11)0.0035 (8)−0.0005 (8)−0.0019 (9)
C120.0144 (11)0.0200 (10)0.0303 (13)0.0005 (7)−0.0008 (9)0.0035 (10)
C130.0332 (15)0.0194 (11)0.0460 (17)0.0012 (9)0.0037 (12)0.0042 (11)

Geometric parameters (Å, °)

S1—O21.4335 (14)C4—C51.389 (3)
S1—O11.4345 (17)C4—H40.9500
S1—N11.6341 (19)C5—C61.392 (3)
S1—C11.757 (2)C5—H50.9500
O3—C71.345 (2)C6—C71.469 (3)
O3—H30.8400C7—C81.366 (3)
O4—C91.231 (3)C8—C91.465 (3)
O5—C91.325 (3)C10—H10A0.9800
O5—C101.452 (3)C10—H10B0.9800
O6—C121.212 (3)C10—H10C0.9800
N1—C81.434 (3)C11—C121.508 (3)
N1—C111.473 (3)C11—H11A0.9900
C1—C21.385 (3)C11—H11B0.9900
C1—C61.406 (3)C12—C131.503 (3)
C2—C31.381 (4)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C3—C41.394 (4)C13—H13C0.9800
C3—H3A0.9500
O2—S1—O1119.03 (10)O3—C7—C6113.72 (18)
O2—S1—N1107.90 (9)C8—C7—C6123.24 (18)
O1—S1—N1107.93 (10)C7—C8—N1120.98 (18)
O2—S1—C1110.99 (11)C7—C8—C9119.99 (18)
O1—S1—C1106.99 (10)N1—C8—C9118.93 (18)
N1—S1—C1102.77 (10)O4—C9—O5123.7 (2)
C7—O3—H3109.5O4—C9—C8122.39 (19)
C9—O5—C10115.80 (17)O5—C9—C8113.86 (18)
C8—N1—C11119.38 (17)O5—C10—H10A109.5
C8—N1—S1114.92 (13)O5—C10—H10B109.5
C11—N1—S1119.83 (15)H10A—C10—H10B109.5
C2—C1—C6121.9 (2)O5—C10—H10C109.5
C2—C1—S1121.44 (17)H10A—C10—H10C109.5
C6—C1—S1116.52 (16)H10B—C10—H10C109.5
C3—C2—C1118.8 (2)N1—C11—C12114.36 (18)
C3—C2—H2120.6N1—C11—H11A108.7
C1—C2—H2120.6C12—C11—H11A108.7
C2—C3—C4120.6 (2)N1—C11—H11B108.7
C2—C3—H3A119.7C12—C11—H11B108.7
C4—C3—H3A119.7H11A—C11—H11B107.6
C5—C4—C3120.1 (2)O6—C12—C13122.8 (2)
C5—C4—H4119.9O6—C12—C11121.97 (18)
C3—C4—H4119.9C13—C12—C11115.3 (2)
C6—C5—C4120.4 (2)C12—C13—H13A109.5
C6—C5—H5119.8C12—C13—H13B109.5
C4—C5—H5119.8H13A—C13—H13B109.5
C5—C6—C1118.06 (19)C12—C13—H13C109.5
C5—C6—C7121.68 (19)H13A—C13—H13C109.5
C1—C6—C7120.2 (2)H13B—C13—H13C109.5
O3—C7—C8123.04 (19)
O2—S1—N1—C8167.94 (15)C5—C6—C7—O320.3 (3)
O1—S1—N1—C8−62.23 (17)C1—C6—C7—O3−161.46 (18)
C1—S1—N1—C850.61 (17)C5—C6—C7—C8−160.21 (19)
O2—S1—N1—C1115.1 (2)C1—C6—C7—C818.0 (3)
O1—S1—N1—C11144.91 (16)O3—C7—C8—N1175.91 (18)
C1—S1—N1—C11−102.25 (17)C6—C7—C8—N1−3.5 (3)
O2—S1—C1—C231.3 (2)O3—C7—C8—C9−0.6 (3)
O1—S1—C1—C2−100.01 (18)C6—C7—C8—C9−179.97 (18)
N1—S1—C1—C2146.46 (18)C11—N1—C8—C7118.1 (2)
O2—S1—C1—C6−152.25 (15)S1—N1—C8—C7−34.9 (2)
O1—S1—C1—C676.41 (16)C11—N1—C8—C9−65.4 (3)
N1—S1—C1—C6−37.13 (17)S1—N1—C8—C9141.61 (16)
C6—C1—C2—C3−0.9 (3)C10—O5—C9—O4−0.7 (3)
S1—C1—C2—C3175.34 (17)C10—O5—C9—C8179.00 (18)
C1—C2—C3—C40.3 (3)C7—C8—C9—O4−5.5 (3)
C2—C3—C4—C50.1 (3)N1—C8—C9—O4177.96 (18)
C3—C4—C5—C60.2 (3)C7—C8—C9—O5174.79 (18)
C4—C5—C6—C1−0.7 (3)N1—C8—C9—O5−1.8 (3)
C4—C5—C6—C7177.53 (19)C8—N1—C11—C12−73.3 (3)
C2—C1—C6—C51.1 (3)S1—N1—C11—C1278.4 (2)
S1—C1—C6—C5−175.30 (15)N1—C11—C12—O62.6 (3)
C2—C1—C6—C7−177.19 (19)N1—C11—C12—C13−176.96 (19)
S1—C1—C6—C76.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O40.841.852.580 (2)145
C3—H3A···O1i0.952.373.286 (3)163
C4—H4···O1ii0.952.493.267 (3)139
C11—H11A···O20.992.462.830 (3)102
C11—H11B···O50.992.402.994 (3)118

Symmetry codes: (i) x+1/2, −y, z; (ii) −x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2729).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788. [PMC free article] [PubMed]
  • Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett.14, 1035–1038. [PubMed]
  • Braun, J. (1923). Chem. Ber 56, 2332-2343.
  • Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.
  • Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem.14, 1171—1175. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol.36, 79–84. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  • Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.
  • Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175—1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography