PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1650–o1651.
Published online 2008 July 31. doi:  10.1107/S1600536808023775
PMCID: PMC2962248

Antalarmin

Abstract

In the mol­ecule of the title compund [systematic name: N-butyl-N-ethyl-2,5,6-trimethyl-7-(2,4,6-trimethyl­phen­yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine], C24H34N4, the pyrrolopy­rimidine ring system is nearly planar, its five- and six-membered rings forming a dihedral angle of 5.3 (2)°. The benzene ring is nearly orthogonal to the central ring system. The N atom carrying the ethyl and n-butyl groups is flattened pyramidal.

Related literature

For related literature, see: Allen (2002 [triangle]); Chorvat et al. (1999 [triangle]); Chu et al. (2007 [triangle]); Dieterich et al. (1997 [triangle]); Gross et al. (2005 [triangle]); Habib et al. (2000 [triangle]); Horn et al. (2008 [triangle]); Hsin et al. (2002 [triangle]); Banić Tomišić et al. (2001 [triangle]); Rivier & Vale (1983 [triangle]); Steckler & Holsboer (1999 [triangle]); Vale et al. (1981 [triangle]); Greiner et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1650-scheme1.jpg

Experimental

Crystal data

  • C24H34N4
  • M r = 378.55
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1650-efi1.jpg
  • a = 10.2656 (10) Å
  • b = 11.0655 (11) Å
  • c = 11.5029 (12) Å
  • α = 63.646 (6)°
  • β = 85.669 (6)°
  • γ = 73.036 (5)°
  • V = 1117.69 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 150 K
  • 0.40 × 0.37 × 0.30 mm

Data collection

  • Nonius KappaCCD diffractometer with Oxford Cryostream
  • Absorption correction: none
  • 35420 measured reflections
  • 8550 independent reflections
  • 6916 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.142
  • S = 1.03
  • 8550 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997 [triangle]); data reduction: HKL (Otwinowski & Minor 1997 [triangle]) DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023775/pv2088sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023775/pv2088Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Corticotropin releasing factor (CRF) is a 41 amino acid hormone that has been implicated in the stress response cascade (Vale et al.,1981). This action is achieved by the release of adrenocorticotropic hormone (ACTH) by stimulation of the hypothalamic-pituitary-adrenal (HPA) axis (Rivier & Vale, 1983). CRF creates this release by binding to G-protein coupled receptors designated as CRF1 and CRF2 (Steckler & Holsboer, 1999). The CRF1 receptor has been designated as the subtype responsible for the physiological reaction to stress (Dieterich et al., 1997). Both subtypes are found widely distributed in the central nervous system and have been correlated to numerous other responses (Hsin et al., 2002).

In the search for non-peptide, selective antagonists for CRF1, antalarmin (1) has emerged as a lead candidate. Analogs have been developed to increase activity and decrease LogP, yet none have been reported as superior in overall performance (Gross et al., 2005; Hsin et al., 2002; Chorvat et al., 1999). Antalarmin has shown anxiolytic activity in primates, as well as a reduction of self-administration of ethanol in addiction models (Habib et al., 2000; Chu et al., 2007). Recently, detailed toxicology has been reported indicating a favorable safety profile and suggesting that clinical trials may begin soon (Horn et al., 2008).

Data collection was initially attempted at 90 K, but an apparent phase change destroyed the crystal at that temperature. Thus, data were collected at 150 K, and the structure based upon those data is presented in Fig. 1. The pyrimidine and pyrrole rings are slightly nonplanar, exhibiting maximum deviations 0.036 (1) Å (for C2) and 0.016 (1) Å (for C6), respectively. These planes form a dihedral angle of 5.3 (2)°. The phenyl group is nearly orthogonal to the pyrrolopyrimidine ring system, forming dihedral angles of 88.52 (2)° with the pyrimidine and 86.40 (3)° with the pyrrole plane. N3 is trigonal planar, lying 0.011 (1) Å from the plane defined by the three C atoms bonded to it. Amine nitrogen N4 is flattened pyramidal, lying 0.252 (1) Å from the plane of C2, C19 and C21, with C–N–C angles in the range 115.32 (7)–118.08 (7)°. The n-butyl group is extended except for its attachment to N, with C19—N4—C21—C22 torsion angle -54.51 (11)°.

No other pyrrolopyrimidines having substituents at N4 are found in the Cambridge Structural Database (version 5.29, Nov. 2007; Allen, 2002). The structure of a similar molecule, ICAKOM, having a cyclopentyl group at N3 and a 4-phenoxyphenyl group at C4, has been reported Banić Tomišić et al. (2001).

Experimental

Synthesis of antalarmin has been reported (Greiner et al., 2002). It was crystallized from acetonitrile:water to afford translucent crystals: Mp = 85.9–86.1°C; HRMS m/z expected: 379.2862 found: 379.2878; CHN analysis for C24H34N4 expected: C 76.15, H 9.05, N 14.80%; found: C 76.07, H 8.69, N 14.90%.

Refinement

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl). A torsional parameter was refined for each methyl group.

Figures

Fig. 1.
Ellipsoids at the 50% level, with H atoms having arbitrary radius.

Crystal data

C24H34N4Z = 2
Mr = 378.55F000 = 412
Triclinic, P1Dx = 1.125 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.2656 (10) ÅCell parameters from 7613 reflections
b = 11.0655 (11) Åθ = 2.5–34.3º
c = 11.5029 (12) ŵ = 0.07 mm1
α = 63.646 (6)ºT = 150 K
β = 85.669 (6)ºFragment, colorless
γ = 73.036 (5)º0.40 × 0.37 × 0.30 mm
V = 1117.69 (19) Å3

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream6916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Monochromator: graphiteθmax = 34.3º
T = 150 Kθmin = 2.6º
ω and [var phi] scansh = −15→16
Absorption correction: nonek = −17→16
35420 measured reflectionsl = −17→17
8550 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049  w = 1/[σ2(Fo2) + (0.0675P)2 + 0.2841P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.44 e Å3
8550 reflectionsΔρmin = −0.24 e Å3
262 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.57024 (7)0.44531 (8)0.71728 (7)0.02058 (14)
N20.63299 (7)0.27413 (8)0.63295 (7)0.02111 (14)
N30.75731 (7)0.51591 (8)0.75233 (8)0.02095 (14)
N40.85651 (8)0.16323 (8)0.60760 (8)0.02270 (15)
C10.54248 (8)0.36459 (9)0.67003 (8)0.02038 (15)
C20.76639 (8)0.26219 (9)0.64044 (8)0.01867 (14)
C30.80944 (8)0.35136 (8)0.67783 (8)0.01795 (14)
C40.93184 (8)0.38865 (9)0.68326 (8)0.02052 (15)
C50.89619 (9)0.48788 (9)0.73001 (9)0.02223 (16)
C60.70349 (8)0.43622 (8)0.71773 (8)0.01811 (14)
C70.39518 (9)0.37212 (11)0.65875 (10)0.02787 (19)
H7A0.36240.42250.56700.042*
H7B0.34090.42230.70630.042*
H7C0.38610.27650.69570.042*
C81.06921 (9)0.34405 (11)0.63522 (10)0.02737 (18)
H8A1.12810.26170.70680.041*
H8B1.11070.42150.60260.041*
H8C1.05850.31980.56500.041*
C90.98058 (11)0.56497 (12)0.75378 (12)0.0329 (2)
H9A1.07610.52790.73890.049*
H9B0.97370.55210.84380.049*
H9C0.94740.66550.69430.049*
C100.67976 (9)0.61342 (9)0.79987 (9)0.02103 (16)
C110.66155 (10)0.56408 (10)0.93308 (9)0.02507 (17)
C120.57765 (11)0.65810 (12)0.97643 (10)0.0316 (2)
H120.56170.62571.06620.038*
C130.51689 (11)0.79804 (12)0.89118 (11)0.0324 (2)
C140.54134 (11)0.84480 (10)0.75999 (11)0.0306 (2)
H140.50270.94120.70190.037*
C150.62119 (10)0.75379 (10)0.71134 (9)0.02509 (17)
C160.73039 (13)0.41372 (12)1.02726 (11)0.0361 (2)
H16A0.82800.40101.03840.054*
H16B0.71840.35030.99330.054*
H16C0.68960.39201.11140.054*
C170.42260 (16)0.89708 (17)0.93916 (17)0.0527 (4)
H17A0.43630.85671.03390.079*
H17B0.32770.91090.91580.079*
H17C0.44260.98800.89890.079*
C180.63861 (13)0.80407 (12)0.56796 (10)0.0363 (2)
H18A0.62510.90600.52660.054*
H18B0.57130.78280.52970.054*
H18C0.73080.75620.55410.054*
C190.79893 (10)0.10010 (11)0.54297 (10)0.02763 (19)
H19A0.72310.06700.59260.033*
H19B0.87000.01720.54340.033*
C200.74631 (12)0.20307 (13)0.40350 (11)0.0331 (2)
H20A0.82050.23800.35450.050*
H20B0.67170.28240.40290.050*
H20C0.71290.15520.36330.050*
C210.97891 (9)0.06971 (10)0.69446 (10)0.02640 (18)
H21A1.00520.12020.73720.032*
H21B1.05470.04890.64130.032*
C220.96184 (11)−0.06949 (10)0.79938 (11)0.0313 (2)
H22A0.9405−0.12250.75670.038*
H22B1.0496−0.12630.85120.038*
C230.85034 (12)−0.05228 (12)0.89113 (11)0.0352 (2)
H23A0.86770.00630.92950.042*
H23B0.7610−0.00240.84090.042*
C240.84413 (15)−0.19306 (14)0.99966 (13)0.0455 (3)
H24A0.9303−0.24011.05310.068*
H24B0.8293−0.25230.96210.068*
H24C0.7688−0.17751.05380.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0157 (3)0.0244 (3)0.0239 (3)−0.0046 (2)0.0023 (2)−0.0136 (3)
N20.0178 (3)0.0246 (3)0.0247 (3)−0.0066 (3)0.0031 (2)−0.0142 (3)
N30.0175 (3)0.0220 (3)0.0271 (4)−0.0050 (2)0.0014 (2)−0.0146 (3)
N40.0213 (3)0.0227 (3)0.0268 (4)−0.0027 (3)0.0018 (3)−0.0155 (3)
C10.0163 (3)0.0249 (4)0.0216 (4)−0.0061 (3)0.0024 (3)−0.0119 (3)
C20.0179 (3)0.0192 (3)0.0189 (3)−0.0038 (3)0.0021 (3)−0.0096 (3)
C30.0152 (3)0.0190 (3)0.0194 (3)−0.0035 (2)0.0015 (2)−0.0093 (3)
C40.0151 (3)0.0226 (4)0.0234 (4)−0.0045 (3)0.0017 (3)−0.0105 (3)
C50.0181 (3)0.0237 (4)0.0265 (4)−0.0065 (3)0.0008 (3)−0.0120 (3)
C60.0164 (3)0.0189 (3)0.0198 (3)−0.0040 (3)0.0013 (3)−0.0099 (3)
C70.0166 (4)0.0387 (5)0.0354 (5)−0.0096 (3)0.0040 (3)−0.0219 (4)
C80.0163 (3)0.0323 (5)0.0346 (5)−0.0069 (3)0.0055 (3)−0.0165 (4)
C90.0258 (4)0.0348 (5)0.0481 (6)−0.0129 (4)0.0015 (4)−0.0242 (5)
C100.0205 (4)0.0219 (4)0.0240 (4)−0.0047 (3)0.0012 (3)−0.0139 (3)
C110.0267 (4)0.0279 (4)0.0233 (4)−0.0090 (3)0.0006 (3)−0.0128 (3)
C120.0343 (5)0.0409 (5)0.0287 (5)−0.0131 (4)0.0069 (4)−0.0227 (4)
C130.0308 (5)0.0364 (5)0.0419 (6)−0.0084 (4)0.0066 (4)−0.0290 (5)
C140.0317 (5)0.0232 (4)0.0380 (5)−0.0020 (3)0.0000 (4)−0.0180 (4)
C150.0274 (4)0.0222 (4)0.0259 (4)−0.0045 (3)0.0011 (3)−0.0124 (3)
C160.0404 (6)0.0331 (5)0.0269 (5)−0.0091 (4)−0.0038 (4)−0.0064 (4)
C170.0517 (8)0.0556 (8)0.0706 (10)−0.0091 (6)0.0167 (7)−0.0508 (8)
C180.0464 (6)0.0290 (5)0.0254 (5)−0.0040 (4)0.0022 (4)−0.0094 (4)
C190.0304 (4)0.0284 (4)0.0321 (5)−0.0080 (3)0.0051 (4)−0.0210 (4)
C200.0340 (5)0.0419 (6)0.0310 (5)−0.0103 (4)0.0019 (4)−0.0230 (4)
C210.0199 (4)0.0251 (4)0.0323 (5)0.0000 (3)0.0026 (3)−0.0152 (4)
C220.0313 (5)0.0232 (4)0.0346 (5)0.0010 (3)0.0004 (4)−0.0138 (4)
C230.0371 (5)0.0291 (5)0.0316 (5)−0.0034 (4)0.0041 (4)−0.0107 (4)
C240.0464 (7)0.0379 (6)0.0376 (6)−0.0104 (5)0.0024 (5)−0.0050 (5)

Geometric parameters (Å, °)

N1—C11.3332 (11)C13—C141.3904 (16)
N1—C61.3422 (11)C13—C171.5100 (15)
N2—C21.3425 (11)C14—C151.3959 (13)
N2—C11.3505 (11)C14—H140.9500
N3—C61.3676 (11)C15—C181.5035 (15)
N3—C51.3972 (11)C16—H16A0.9800
N3—C101.4331 (11)C16—H16B0.9800
N4—C21.3860 (10)C16—H16C0.9800
N4—C191.4692 (12)C17—H17A0.9800
N4—C211.4700 (12)C17—H17B0.9800
C1—C71.5023 (12)C17—H17C0.9800
C2—C31.4190 (11)C18—H18A0.9800
C3—C61.4095 (11)C18—H18B0.9800
C3—C41.4458 (11)C18—H18C0.9800
C4—C51.3743 (12)C19—C201.5207 (16)
C4—C81.5020 (12)C19—H19A0.9900
C5—C91.4923 (13)C19—H19B0.9900
C7—H7A0.9800C20—H20A0.9800
C7—H7B0.9800C20—H20B0.9800
C7—H7C0.9800C20—H20C0.9800
C8—H8A0.9800C21—C221.5280 (15)
C8—H8B0.9800C21—H21A0.9900
C8—H8C0.9800C21—H21B0.9900
C9—H9A0.9800C22—C231.5261 (16)
C9—H9B0.9800C22—H22A0.9900
C9—H9C0.9800C22—H22B0.9900
C10—C151.3980 (13)C23—C241.5194 (17)
C10—C111.3981 (13)C23—H23A0.9900
C11—C121.3949 (14)C23—H23B0.9900
C11—C161.5068 (15)C24—H24A0.9800
C12—C131.3890 (17)C24—H24B0.9800
C12—H120.9500C24—H24C0.9800
C1—N1—C6112.50 (7)C15—C14—H14119.1
C2—N2—C1119.06 (7)C14—C15—C10117.71 (9)
C6—N3—C5108.48 (7)C14—C15—C18120.94 (9)
C6—N3—C10124.21 (7)C10—C15—C18121.30 (8)
C5—N3—C10127.29 (7)C11—C16—H16A109.5
C2—N4—C19117.58 (7)C11—C16—H16B109.5
C2—N4—C21118.08 (7)H16A—C16—H16B109.5
C19—N4—C21115.32 (7)C11—C16—H16C109.5
N1—C1—N2127.02 (8)H16A—C16—H16C109.5
N1—C1—C7117.04 (8)H16B—C16—H16C109.5
N2—C1—C7115.94 (8)C13—C17—H17A109.5
N2—C2—N4117.28 (7)C13—C17—H17B109.5
N2—C2—C3119.88 (7)H17A—C17—H17B109.5
N4—C2—C3122.82 (7)C13—C17—H17C109.5
C6—C3—C2113.94 (7)H17A—C17—H17C109.5
C6—C3—C4106.79 (7)H17B—C17—H17C109.5
C2—C3—C4139.21 (8)C15—C18—H18A109.5
C5—C4—C3106.48 (7)C15—C18—H18B109.5
C5—C4—C8124.37 (8)H18A—C18—H18B109.5
C3—C4—C8128.84 (8)C15—C18—H18C109.5
C4—C5—N3109.62 (7)H18A—C18—H18C109.5
C4—C5—C9129.98 (8)H18B—C18—H18C109.5
N3—C5—C9120.38 (8)N4—C19—C20112.44 (8)
N1—C6—N3124.15 (7)N4—C19—H19A109.1
N1—C6—C3127.23 (7)C20—C19—H19A109.1
N3—C6—C3108.55 (7)N4—C19—H19B109.1
C1—C7—H7A109.5C20—C19—H19B109.1
C1—C7—H7B109.5H19A—C19—H19B107.8
H7A—C7—H7B109.5C19—C20—H20A109.5
C1—C7—H7C109.5C19—C20—H20B109.5
H7A—C7—H7C109.5H20A—C20—H20B109.5
H7B—C7—H7C109.5C19—C20—H20C109.5
C4—C8—H8A109.5H20A—C20—H20C109.5
C4—C8—H8B109.5H20B—C20—H20C109.5
H8A—C8—H8B109.5N4—C21—C22114.50 (8)
C4—C8—H8C109.5N4—C21—H21A108.6
H8A—C8—H8C109.5C22—C21—H21A108.6
H8B—C8—H8C109.5N4—C21—H21B108.6
C5—C9—H9A109.5C22—C21—H21B108.6
C5—C9—H9B109.5H21A—C21—H21B107.6
H9A—C9—H9B109.5C23—C22—C21113.98 (8)
C5—C9—H9C109.5C23—C22—H22A108.8
H9A—C9—H9C109.5C21—C22—H22A108.8
H9B—C9—H9C109.5C23—C22—H22B108.8
C15—C10—C11122.03 (8)C21—C22—H22B108.8
C15—C10—N3119.07 (8)H22A—C22—H22B107.7
C11—C10—N3118.86 (8)C24—C23—C22112.13 (10)
C12—C11—C10118.08 (9)C24—C23—H23A109.2
C12—C11—C16120.88 (9)C22—C23—H23A109.2
C10—C11—C16121.05 (9)C24—C23—H23B109.2
C13—C12—C11121.45 (10)C22—C23—H23B109.2
C13—C12—H12119.3H23A—C23—H23B107.9
C11—C12—H12119.3C23—C24—H24A109.5
C12—C13—C14118.91 (9)C23—C24—H24B109.5
C12—C13—C17120.70 (11)H24A—C24—H24B109.5
C14—C13—C17120.36 (11)C23—C24—H24C109.5
C13—C14—C15121.74 (9)H24A—C24—H24C109.5
C13—C14—H14119.1H24B—C24—H24C109.5
C6—N1—C1—N24.24 (13)C10—N3—C6—C3−179.03 (8)
C6—N1—C1—C7−177.02 (8)C2—C3—C6—N1−3.57 (13)
C2—N2—C1—N1−1.29 (14)C4—C3—C6—N1174.07 (8)
C2—N2—C1—C7179.97 (8)C2—C3—C6—N3179.42 (7)
C1—N2—C2—N4176.89 (8)C4—C3—C6—N3−2.94 (9)
C1—N2—C2—C3−4.58 (12)C6—N3—C10—C15−90.87 (11)
C19—N4—C2—N211.95 (12)C5—N3—C10—C1587.33 (11)
C21—N4—C2—N2−133.70 (9)C6—N3—C10—C1187.18 (11)
C19—N4—C2—C3−166.54 (8)C5—N3—C10—C11−94.62 (11)
C21—N4—C2—C347.81 (12)C15—C10—C11—C122.55 (14)
N2—C2—C3—C66.56 (12)N3—C10—C11—C12−175.43 (8)
N4—C2—C3—C6−174.99 (8)C15—C10—C11—C16−177.49 (9)
N2—C2—C3—C4−169.98 (10)N3—C10—C11—C164.53 (13)
N4—C2—C3—C48.47 (16)C10—C11—C12—C13−2.01 (15)
C6—C3—C4—C52.29 (9)C16—C11—C12—C13178.03 (10)
C2—C3—C4—C5178.98 (10)C11—C12—C13—C14−0.34 (16)
C6—C3—C4—C8−171.43 (9)C11—C12—C13—C17177.93 (11)
C2—C3—C4—C85.26 (17)C12—C13—C14—C152.29 (16)
C3—C4—C5—N3−0.82 (10)C17—C13—C14—C15−175.98 (11)
C8—C4—C5—N3173.25 (8)C13—C14—C15—C10−1.77 (15)
C3—C4—C5—C9−179.00 (10)C13—C14—C15—C18175.79 (11)
C8—C4—C5—C9−4.92 (16)C11—C10—C15—C14−0.71 (14)
C6—N3—C5—C4−1.01 (10)N3—C10—C15—C14177.27 (8)
C10—N3—C5—C4−179.44 (8)C11—C10—C15—C18−178.26 (10)
C6—N3—C5—C9177.37 (9)N3—C10—C15—C18−0.28 (14)
C10—N3—C5—C9−1.06 (14)C2—N4—C19—C2071.72 (11)
C1—N1—C6—N3175.04 (8)C21—N4—C19—C20−141.70 (9)
C1—N1—C6—C3−1.54 (13)C2—N4—C21—C2291.90 (10)
C5—N3—C6—N1−174.64 (8)C19—N4—C21—C22−54.51 (11)
C10—N3—C6—N13.84 (14)N4—C21—C22—C23−60.09 (12)
C5—N3—C6—C32.48 (10)C21—C22—C23—C24−175.74 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2088).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Banić Tomišić, Z., Čempuh, A. & Malnar, I. (2001). Acta Cryst. E57, o511–o513.
  • Chorvat, R. J., Bakthavatchalam, R., Beck, J. P., Gilligan, P. J., Wilde, R. G., Cocuzza, A. J., Hobbs, F. W., Cheeseman, R. S., Curry, M., Rescinito, J. P., Krenitsky, P., Chidester, D., Yarem, J. A., Klaczkiewicz, J. D., Hodge, C. N., Aldrich, P. E., Wasserman, Z. R., Fernandez, C. H., Zaczek, R., Fitzgerald, L. W., Huang, S.-M., Shen, H. L., Wong, Y. N., Chien, B. M., Quon, C. Y. & Arvanitis, A. (1999). J. Med. Chem.42, 833–848. [PubMed]
  • Chu, K., Koob, G. F., Cole, M., Zorrilla, E. P. & Roberts, A. J. (2007). Pharmacol. Biochem. Behav.86, 813–821. [PMC free article] [PubMed]
  • Dieterich, K. D., Lehnert, H. & De Souza, E. B. (1997). Exp. Clin. Endocrinol. Diabetes, 105, 65–82. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Greiner, E., Atkinson, A. J. Jr, Ayala, A., Chrousos, G. P., Contoreggi, C., Eckelman, W. C., Gold, P. W., Habib, K. E., Jacobson, A. E., Whittaker, N., Webster, E. L. & Rice, K. C. (2002). J. Labelled Compd. Radiopharm.45, 637–645.
  • Gross, R. S., Guo, Z., Dyck, B., Coon, T., Huang, C. Q., Lowe, R. F., Marinkovic, D., Moorjani, M., Nelson, J., Zamani-Kord, S., Grigoriadis, D. E., Hoare, S. R. J., Crowe, P. D., Bu, J. H., Haddach, M., McCarthy, J., Saunders, J., Sullivan, R., Chen, T. K. & Williams, J. P. (2005). J. Med. Chem.48, 5780–5793. [PubMed]
  • Habib, K. E., Weld, K. P., Rice, K. C., Pushkas, J., Champoux, M., Listwak, S., Webster, E. L., Atkinson, A. J., Schulkin, J., Contorggi, C., Chrousos, G. P., McCann, S. M., Suomi, S. J., Higley, J. D. & Gold, P. W. (2000). Proc. Natl. Acad. Sci.97, 6079–6084. [PubMed]
  • Horn, T. L., Harder, J. B., Johnson, W. D., Curry, P. T., Parchment, R. E., Morrisey, R. L., Mellick, P. W., Calis, K. A., Gold, P. W., Rice, K. C., Contoreggi, C., Charney, D. S., Cizza, G., Glaze, E. R., Tomaszewski, J. E. & McCormick, D. L. (2008). Toxicology, 248, 8–17. [PMC free article] [PubMed]
  • Hsin, L.-W., Tian, X., Webster, E. L., Coop, A., Caldwell, T. M., Jacobsen, A. E., Chrousos, G. P., Gold, P. W., Habib, K. E., Ayala, A., Eckelman, W. C., Contoreggi, C. & Rice, K. C. (2002). Bioorg. Med. Chem.10, 175–183. [PubMed]
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rivier, C. & Vale, W. (1983). Nature (London), 305, 325–327. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steckler, T. & Holsboer, F. (1999). Biol. Psychiatry, 46, 1480–1508. [PubMed]
  • Vale, W., Spiess, J., Rivier, C. & Rivier, J. (1981). Science, 213, 1394–1397. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography