PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1634.
Published online 2008 July 31. doi:  10.1107/S1600536808023544
PMCID: PMC2962241

6-(4-Pyrid­yl)-3-(3,4,5-trimethoxy­phen­yl)-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

Abstract

In the mol­ecule of the title compound, C17H15N5O3S, the planar central heterocylic ring system is oriented at dihedral angles of 5.32 (4) and 9.41 (4)°, respectively with respect to trimethoxy­phenyl and pyridine rings. Intra­molecular C—H(...)N, C—H(...)O and C—H(...)S hydrogen bonds result in the formation of a nearly planar six-membered ring, which is oriented at a dihedral angle of 3.07 (5)° with respect to the central heterocylic ring system, and non-planar six- and five-membered rings having twist and envelope conformations, respectively. In the crystal structure, inter­molecular C—H(...)N and C—H(...)O hydrogen bonds link the mol­ecules. There is a C—H(...)π contact between the pyridine ring and a methyl group and a π–π contact between the central heterocylic ring system and the trimethoxy­phenyl ring [centroid–centroid distance = 3.758 (1) Å].

Related literature

For general background, see: Karabasanagouda et al. (2007 [triangle]); Mathew et al. (2007 [triangle]). For ring conformation puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1634-scheme1.jpg

Experimental

Crystal data

  • C17H15N5O3S
  • M r = 369.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1634-efi1.jpg
  • a = 7.7051 (15) Å
  • b = 8.6684 (17) Å
  • c = 13.851 (3) Å
  • α = 105.00 (3)°
  • β = 104.18 (3)°
  • γ = 96.58 (3)°
  • V = 850.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 113 (2) K
  • 0.22 × 0.20 × 0.12 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.953, T max = 0.974
  • 4917 measured reflections
  • 2970 independent reflections
  • 2467 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.100
  • S = 1.09
  • 2970 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023544/hk2505sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023544/hk2505Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Guiyang College for financial support.

supplementary crystallographic information

Comment

1,2,4-Triazole and 1,3,4-thiadiazole represent one of the most biologically active classes of compounds, possessing a wide spectrum of activities. Various substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles are associated with diverse pharmacological activities such as antimicrobial (Karabasanagouda et al., 2007) and anti-inflammatory activity (Mathew et al., 2007). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (C1-C6), B (N1-N3/C10/C11), C (S1/N3/N4/C11/C12) and D (N5/C13-C17) are, of course, planar, and the dihedral angles between them are A/B = 4.89 (6)°, A/C = 5.67 (5)°, A/D = 14.48 (5)°, B/C = 0.78 (5)°, B/D = 9.84 (5)° and C/D = 9.09 (4)°. So, rings B and C are nearly coplanar. The coplanar ring system is oriented with respect to rings A and D at dihedral angles of 5.32 (4)° and 9.41 (4)°. The intramolecular C-H···N, C-H···O and C-H···S hydrogen bonds (Table 1) result in the formation of nearly planar six-membered ring E (N3/N4/C1/C2/C10/H2) and non-planar six- and five-membered rings F (O1/O2/C3/C4/C8/H8A) and G (S1/C12-C14/H14). Ring E is oriented with respect to the planar central heterocylic ring system at a dihedral angle of 3.07 (5)°. Ring F has twisted [[var phi] = -109.11 (2)°, θ = 117.46 (3)°] conformation, having total puckering amplitude, QT, of 1.434 (3) Å (Cremer & Pople, 1975). Ring G adopts envelope conformation, with S1 atom displaced by 0.246 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···N and C-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. A C—H···π contact (Table 1) between the pyridine ring and the methyl group and a π—π contact between C and A rings Cg1···Cg4i [symmetry code: (i) 2 - x, -y, -z, where Cg1 and Cg4 are centroids of the rings C (S1/N3/N4/C11/C12) and A (C1-C6), respectively] further stabilize the structure, with centroid-centroid distance of 3.758 (1) Å.

Experimental

For the preparation of the title compound, 4-amino-5-(3,4,5-trimethoxyphenyl) -4H-1,2,4-triazole-3-thiol (0.01 M) and isonicotinic acid (0.01 M) were dissolved in dry phosphorous oxychloride (10 ml). The resulted solution was further heated under reflux for 7 h. The reaction mixture was cooled to room temperature and the mixture was gradually poured onto crushed ice with stirring. Finally, powdered potassium carbonate and the required amount of solid potassium hydroxide were added until the pH of the mixture was raised to 8, to remove the excess of phosphorous oxychloride. The mixture was allowed to stand overnight and the solid was separated. It was filtered, washed with cold water, and then dried. Crystals suitable for X-ray analysis were obtained by the recrystallization of the solid residue from a mixture of N,N-dimethylformamide/ethanol (1:1) by slow evaporation at room temperature.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H15N5O3SZ = 2
Mr = 369.40F000 = 384
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Melting point: 447 K
a = 7.7051 (15) ÅMo Kα radiation λ = 0.71073 Å
b = 8.6684 (17) ÅCell parameters from 2198 reflections
c = 13.851 (3) Åθ = 2.5–27.5º
α = 105.00 (3)ºµ = 0.22 mm1
β = 104.18 (3)ºT = 113 (2) K
γ = 96.58 (3)ºPrism, colorless
V = 850.6 (4) Å30.22 × 0.20 × 0.12 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer2970 independent reflections
Radiation source: rotating anode2467 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.021
T = 113(2) Kθmax = 25.0º
ω scansθmin = 1.6º
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005)h = −9→8
Tmin = 0.953, Tmax = 0.974k = −5→10
4917 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2970 reflectionsΔρmax = 0.33 e Å3
238 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.12462 (5)1.42520 (5)0.15970 (3)0.01718 (15)
O10.42347 (15)0.65186 (14)−0.05689 (9)0.0207 (3)
O20.38351 (15)0.55944 (14)−0.26365 (10)0.0221 (3)
O30.22791 (16)0.72787 (15)−0.38536 (9)0.0237 (3)
N10.06954 (17)1.22162 (16)−0.13378 (11)0.0173 (3)
N20.04356 (18)1.35552 (17)−0.06135 (11)0.0174 (3)
N30.16107 (16)1.18786 (16)0.01937 (10)0.0137 (3)
N40.22454 (17)1.14340 (16)0.10761 (11)0.0153 (3)
N50.3721 (2)1.2020 (2)0.49150 (12)0.0271 (4)
C10.2006 (2)0.9733 (2)−0.13125 (13)0.0154 (4)
C20.2800 (2)0.8834 (2)−0.06844 (13)0.0153 (4)
H20.29200.91570.00270.018*
C30.3410 (2)0.7454 (2)−0.11299 (13)0.0159 (4)
C40.3211 (2)0.6951 (2)−0.21931 (14)0.0172 (4)
C50.2417 (2)0.7869 (2)−0.28176 (13)0.0183 (4)
C60.1823 (2)0.9264 (2)−0.23794 (13)0.0176 (4)
H60.13080.9879−0.27930.021*
C70.4203 (2)0.6867 (2)0.04955 (13)0.0197 (4)
H7A0.48660.79480.08790.030*
H7B0.47570.61000.07980.030*
H7C0.29630.67860.05220.030*
C80.2630 (3)0.4101 (2)−0.27988 (15)0.0273 (4)
H8A0.24300.4057−0.21480.041*
H8B0.31680.3198−0.30670.041*
H8C0.14880.4049−0.32900.041*
C90.1605 (3)0.8243 (2)−0.45012 (15)0.0285 (4)
H9A0.03700.8318−0.45060.043*
H9B0.16440.7747−0.51990.043*
H9C0.23470.9313−0.42350.043*
C100.1416 (2)1.1222 (2)−0.08494 (13)0.0145 (3)
C110.1006 (2)1.33163 (19)0.03000 (13)0.0151 (4)
C120.2130 (2)1.2572 (2)0.18640 (13)0.0156 (4)
C130.2677 (2)1.2409 (2)0.29190 (13)0.0163 (4)
C140.2786 (2)1.3663 (2)0.37991 (14)0.0225 (4)
H140.25101.46570.37380.027*
C150.3307 (2)1.3421 (2)0.47678 (15)0.0265 (4)
H150.33761.42760.53510.032*
C160.3604 (2)1.0826 (2)0.40556 (14)0.0242 (4)
H160.38910.98460.41380.029*
C170.3089 (2)1.0943 (2)0.30574 (14)0.0212 (4)
H170.30171.00630.24880.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0206 (2)0.0148 (2)0.0170 (2)0.00664 (17)0.00523 (17)0.00510 (18)
O10.0273 (6)0.0190 (7)0.0201 (7)0.0131 (5)0.0084 (5)0.0081 (5)
O20.0265 (6)0.0152 (6)0.0284 (7)0.0078 (5)0.0154 (5)0.0040 (6)
O30.0328 (7)0.0239 (7)0.0151 (6)0.0079 (5)0.0091 (5)0.0039 (6)
N10.0198 (7)0.0153 (7)0.0182 (8)0.0056 (6)0.0056 (6)0.0064 (6)
N20.0213 (7)0.0153 (7)0.0172 (8)0.0069 (6)0.0057 (6)0.0057 (6)
N30.0149 (7)0.0117 (7)0.0155 (7)0.0040 (5)0.0037 (5)0.0055 (6)
N40.0161 (7)0.0168 (7)0.0148 (7)0.0047 (6)0.0039 (5)0.0077 (6)
N50.0300 (8)0.0316 (9)0.0211 (9)0.0062 (7)0.0071 (7)0.0105 (8)
C10.0126 (8)0.0155 (9)0.0177 (9)0.0019 (6)0.0043 (6)0.0048 (7)
C20.0151 (8)0.0146 (8)0.0161 (9)0.0027 (6)0.0048 (6)0.0039 (7)
C30.0127 (8)0.0150 (9)0.0206 (9)0.0033 (6)0.0045 (6)0.0064 (7)
C40.0164 (8)0.0128 (8)0.0229 (9)0.0025 (7)0.0089 (7)0.0030 (7)
C50.0169 (8)0.0203 (9)0.0169 (9)0.0006 (7)0.0061 (7)0.0040 (8)
C60.0164 (8)0.0181 (9)0.0193 (9)0.0048 (7)0.0041 (7)0.0074 (8)
C70.0232 (9)0.0184 (9)0.0204 (9)0.0080 (7)0.0050 (7)0.0097 (8)
C80.0395 (11)0.0180 (9)0.0270 (10)0.0051 (8)0.0160 (8)0.0050 (8)
C90.0341 (10)0.0347 (11)0.0181 (10)0.0075 (9)0.0088 (8)0.0088 (9)
C100.0130 (7)0.0151 (8)0.0150 (8)0.0003 (6)0.0034 (6)0.0052 (7)
C110.0131 (8)0.0122 (8)0.0212 (9)0.0042 (6)0.0059 (7)0.0055 (7)
C120.0127 (8)0.0147 (8)0.0197 (9)0.0027 (6)0.0040 (6)0.0057 (7)
C130.0124 (8)0.0203 (9)0.0166 (9)0.0026 (7)0.0036 (6)0.0069 (7)
C140.0272 (9)0.0187 (9)0.0218 (10)0.0048 (8)0.0083 (7)0.0050 (8)
C150.0314 (10)0.0268 (11)0.0191 (10)0.0016 (8)0.0086 (8)0.0035 (8)
C160.0273 (9)0.0259 (10)0.0227 (10)0.0085 (8)0.0070 (7)0.0114 (8)
C170.0224 (9)0.0214 (9)0.0203 (9)0.0076 (7)0.0047 (7)0.0070 (8)

Geometric parameters (Å, °)

S1—C111.7226 (18)C3—C41.387 (2)
S1—C121.7615 (17)C4—C51.402 (2)
O1—C31.3664 (19)C5—C61.387 (2)
O1—C71.433 (2)C6—H60.9300
O2—C41.376 (2)C7—H7A0.9600
O2—C81.435 (2)C7—H7B0.9600
O3—C51.366 (2)C7—H7C0.9600
O3—C91.426 (2)C8—H8A0.9600
N1—C101.317 (2)C8—H8B0.9600
N1—N21.394 (2)C8—H8C0.9600
N2—C111.312 (2)C9—H9A0.9600
N3—C111.365 (2)C9—H9B0.9600
N3—N41.3694 (18)C9—H9C0.9600
N3—C101.372 (2)C12—C131.467 (2)
N4—C121.297 (2)C13—C141.385 (2)
N5—C161.336 (2)C13—C171.393 (2)
N5—C151.343 (2)C14—C151.381 (2)
C1—C21.392 (2)C14—H140.9300
C1—C61.394 (2)C15—H150.9300
C1—C101.460 (2)C16—C171.376 (2)
C2—C31.387 (2)C16—H160.9300
C2—H20.9300C17—H170.9300
C11—S1—C1287.35 (8)O2—C8—H8B109.5
C3—O1—C7116.86 (13)H8A—C8—H8B109.5
C4—O2—C8113.05 (12)O2—C8—H8C109.5
C5—O3—C9116.86 (14)H8A—C8—H8C109.5
C10—N1—N2109.38 (13)H8B—C8—H8C109.5
C11—N2—N1106.05 (13)O3—C9—H9A109.5
C11—N3—N4117.95 (14)O3—C9—H9B109.5
C11—N3—C10106.53 (13)H9A—C9—H9B109.5
N4—N3—C10135.51 (13)O3—C9—H9C109.5
C12—N4—N3107.80 (13)H9A—C9—H9C109.5
C16—N5—C15116.09 (16)H9B—C9—H9C109.5
C2—C1—C6120.81 (15)N1—C10—N3107.71 (14)
C2—C1—C10120.03 (15)N1—C10—C1126.81 (15)
C6—C1—C10119.11 (15)N3—C10—C1125.40 (14)
C3—C2—C1119.36 (16)N2—C11—N3110.32 (15)
C3—C2—H2120.3N2—C11—S1139.95 (13)
C1—C2—H2120.3N3—C11—S1109.73 (12)
O1—C3—C2123.22 (15)N4—C12—C13120.08 (15)
O1—C3—C4116.10 (14)N4—C12—S1117.15 (12)
C2—C3—C4120.68 (15)C13—C12—S1122.75 (13)
O2—C4—C3120.89 (15)C14—C13—C17117.81 (16)
O2—C4—C5119.60 (15)C14—C13—C12122.40 (16)
C3—C4—C5119.48 (15)C17—C13—C12119.78 (16)
O3—C5—C6124.38 (15)C15—C14—C13119.24 (17)
O3—C5—C4115.23 (15)C15—C14—H14120.4
C6—C5—C4120.39 (15)C13—C14—H14120.4
C5—C6—C1119.26 (15)N5—C15—C14123.67 (18)
C5—C6—H6120.4N5—C15—H15118.2
C1—C6—H6120.4C14—C15—H15118.2
O1—C7—H7A109.5N5—C16—C17124.66 (17)
O1—C7—H7B109.5N5—C16—H16117.7
H7A—C7—H7B109.5C17—C16—H16117.7
O1—C7—H7C109.5C16—C17—C13118.51 (18)
H7A—C7—H7C109.5C16—C17—H17120.7
H7B—C7—H7C109.5C13—C17—H17120.7
O2—C8—H8A109.5
C10—N1—N2—C11−0.40 (17)N4—N3—C10—C1−3.7 (3)
C11—N3—N4—C12−0.60 (19)C2—C1—C10—N1177.96 (15)
C10—N3—N4—C12178.75 (15)C6—C1—C10—N10.3 (2)
C6—C1—C2—C3−0.1 (2)C2—C1—C10—N31.7 (2)
C10—C1—C2—C3−177.80 (14)C6—C1—C10—N3−176.04 (13)
C7—O1—C3—C29.6 (2)N1—N2—C11—N3−0.34 (17)
C7—O1—C3—C4−170.70 (13)N1—N2—C11—S1179.14 (15)
C1—C2—C3—O1178.75 (13)N4—N3—C11—N2−179.55 (12)
C1—C2—C3—C4−1.0 (2)C10—N3—C11—N20.92 (17)
C8—O2—C4—C379.22 (19)N4—N3—C11—S10.80 (17)
C8—O2—C4—C5−102.87 (18)C10—N3—C11—S1−178.73 (9)
O1—C3—C4—O2−0.6 (2)C12—S1—C11—N2179.97 (19)
C2—C3—C4—O2179.15 (14)C12—S1—C11—N3−0.55 (11)
O1—C3—C4—C5−178.51 (14)N3—N4—C12—C13178.53 (13)
C2—C3—C4—C51.2 (2)N3—N4—C12—S10.12 (16)
C9—O3—C5—C65.0 (2)C11—S1—C12—N40.26 (13)
C9—O3—C5—C4−175.42 (14)C11—S1—C12—C13−178.10 (13)
O2—C4—C5—O32.1 (2)N4—C12—C13—C14172.23 (15)
C3—C4—C5—O3180.00 (13)S1—C12—C13—C14−9.5 (2)
O2—C4—C5—C6−178.33 (14)N4—C12—C13—C17−8.5 (2)
C3—C4—C5—C6−0.4 (2)S1—C12—C13—C17169.79 (12)
O3—C5—C6—C1178.88 (14)C17—C13—C14—C150.6 (2)
C4—C5—C6—C1−0.7 (2)C12—C13—C14—C15179.86 (14)
C2—C1—C6—C51.0 (2)C16—N5—C15—C140.0 (3)
C10—C1—C6—C5178.66 (14)C13—C14—C15—N5−0.1 (3)
N2—N1—C10—N30.96 (17)C15—N5—C16—C17−0.4 (3)
N2—N1—C10—C1−175.87 (14)N5—C16—C17—C130.8 (3)
C11—N3—C10—N1−1.14 (17)C14—C13—C17—C16−0.9 (2)
N4—N3—C10—N1179.45 (15)C12—C13—C17—C16179.80 (14)
C11—N3—C10—C1175.75 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···N40.932.323.016 (3)131
C7—H7B···O1i0.962.453.313 (3)149
C8—H8A···O10.962.593.106 (3)114
C8—H8A···N1ii0.962.603.409 (3)142
C14—H14···S10.932.803.185 (3)106
C9—H9A···Cg3iii0.963.073.974 (3)157

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2505).

References

  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Karabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem.42, 521–529. [PubMed]
  • Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem.42, 823–840. [PubMed]
  • Rigaku/MSC. (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography