PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1627.
Published online 2008 July 31. doi:  10.1107/S1600536808023271
PMCID: PMC2962236

2,2′-Bis(9-hydr­oxy-9-fluoren­yl)biphen­yl–ethyl acetate (1/1)

Abstract

In the title host–guest compound, C38H26O2·C4H8O2, the ethyl acetate mol­ecule (guest), which adopts a fully extended conformation, and the biphenyl derivative (host) are connected via O—H(...)O hydrogen bonds [H(...)O = 1.90 (3) Å] into discrete assemblies. The hydro­carbon skeleton of the host mol­ecule deviates only slightly from C2 symmetry. The OH groups of the host are involved in intra­molecular O—H(...)O hydrogen bonding [H(...)O = 1.83 (3) Å].

Related literature

For related literature, see: Barbour et al. (1993 [triangle]); Ibragimov et al. (2001 [triangle]); Sardone (1996 [triangle]); Sumarna et al. (2003 [triangle]); Weber et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1627-scheme1.jpg

Experimental

Crystal data

  • C38H26O2·C4H8O2
  • M r = 602.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1627-efi1.jpg
  • a = 11.645 (2) Å
  • b = 16.364 (3) Å
  • c = 17.471 (3) Å
  • β = 97.72 (3)°
  • V = 3299.1 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Stoe STADI4 diffractometer
  • Absorption correction: none
  • 5807 measured reflections
  • 5650 independent reflections
  • 3654 reflections with I > 2σ(I)
  • 3 standard reflections every 100 reflections intensity decay: 2.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.141
  • S = 1.20
  • 5650 reflections
  • 424 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023271/gk2155sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023271/gk2155Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Crystalline inclusion compounds (clathrates, host–guest complexes) are of increasing importance in supramolecular chemistry because of their significant potential in addressing a variety of fundamental and practical issues. 2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl (I) is a host compound with good clathrate-forming ability and the crystal structures of its inclusion compounds with acetonitrile, cyclohexanone, n-propylamine (Barbour et al., 1993), acetone (three solvates) (Sardone, 1996; Ibragimov et al., 2001) and chloroform (two solvates) (Sumarna et al., 2003) were reported. Here, we report the crystal structure of a host–guest complex of (I) with ethyl acetate which resembles closely that of (I) with acetone (1/1) (Sardone, 1996). The molecule of (I) has three conformational degrees of freedom (rotation around the central aryl–aryl single bond and rotations around the aryl–fluorenyl bonds), however it exhibits considerable conformational rigidity due to the stabilizing effect of the intramolecular O—H···O hydrogen bond between the hydroxyl groups (Fig. 1, Table 1). The crystal packing is mainly stabilized by van der Waals forces (Fig.2).

Experimental

2,2'-Bis(9-hydroxy-9-fluorenyl)biphenyl was synthesized according to the procedure described by Weber et al., (1993). The stable in the air crystals were grown by slow evaporation from ethyl acetate solution.

Refinement

H atoms from the OH groups were located from difference Fourier maps and fully refined. The remaining H atoms were positioned geometrically (C—H 0.93–0.98 Å) and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C), except the methyl groups where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
Perspective view of the title compound, showing 30% probability displacement ellipsoids for the non-H atoms. Dashed lines represent hydrogen bonds.
Fig. 2.
Packing diagram of the title compound (I) viewed down the a axis. H atoms have been ommited for clarity. Hydrogen bonds are shown as dashed lines.

Crystal data

C38H26O2·C4H8O2F000 = 1272
Mr = 602.69Dx = 1.213 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.645 (2) Åθ = 10–20º
b = 16.364 (3) ŵ = 0.08 mm1
c = 17.471 (3) ÅT = 293 (2) K
β = 97.72 (3)ºBlock, colourless
V = 3299.1 (10) Å30.4 × 0.2 × 0.2 mm
Z = 4

Data collection

Stoe STADI4 diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.6º
T = 293(2) Kh = −13→11
ω/2θ scansk = 0→19
Absorption correction: nonel = 0→20
5650 measured reflections3 standard reflections
5807 independent reflections every 100 reflections
3654 reflections with I > 2σ(I) intensity decay: 2.6%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.068  w = 1/[σ2(Fo2) + (0.0281P)2 + 2.047P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.24 e Å3
5650 reflectionsΔρmin = −0.16 e Å3
424 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.70308 (18)0.69051 (14)0.20949 (13)0.0518 (6)
O20.63649 (17)0.85042 (13)0.21819 (12)0.0470 (5)
C10.8676 (3)0.62161 (19)0.1739 (2)0.0511 (8)
C20.8325 (3)0.5837 (2)0.1044 (2)0.0716 (11)
H2A0.77650.60730.06810.086*
C30.8827 (4)0.5090 (3)0.0897 (3)0.0937 (14)
H3A0.85960.48220.04320.112*
C40.9657 (5)0.4747 (3)0.1430 (4)0.0995 (17)
H4A0.99820.42480.13210.119*
C51.0019 (3)0.5126 (3)0.2122 (3)0.0828 (13)
H5A1.05880.48890.24780.099*
C60.9523 (3)0.5867 (2)0.2280 (2)0.0616 (10)
C70.9683 (3)0.6387 (2)0.2964 (2)0.0633 (10)
C81.0404 (4)0.6306 (3)0.3666 (3)0.0891 (14)
H8A1.09250.58740.37490.107*
C91.0330 (5)0.6877 (4)0.4232 (3)0.1026 (18)
H9A1.08140.68310.46980.123*
C100.9559 (4)0.7516 (3)0.4126 (2)0.0903 (14)
H10A0.95100.78850.45260.108*
C110.8848 (3)0.7614 (2)0.3424 (2)0.0701 (10)
H11A0.83340.80500.33430.084*
C120.8930 (3)0.7041 (2)0.28501 (19)0.0545 (9)
C130.8229 (3)0.70131 (18)0.20394 (17)0.0460 (7)
C140.8464 (3)0.77519 (18)0.15426 (17)0.0434 (7)
C150.9585 (3)0.8074 (2)0.16490 (18)0.0527 (8)
H15A1.01390.78350.20130.063*
C160.9899 (3)0.8735 (2)0.1234 (2)0.0592 (9)
H16A1.06550.89310.13150.071*
C170.9087 (3)0.9100 (2)0.07009 (19)0.0597 (9)
H17A0.92840.95510.04220.072*
C180.7978 (3)0.87899 (19)0.05842 (18)0.0524 (8)
H18A0.74340.90380.02190.063*
C190.7638 (3)0.81209 (18)0.09903 (16)0.0433 (7)
C200.6441 (3)0.77988 (17)0.06964 (16)0.0423 (7)
C210.6384 (3)0.73514 (19)0.00138 (17)0.0523 (8)
H21A0.70720.7234−0.01800.063*
C220.5355 (3)0.7074 (2)−0.03899 (18)0.0584 (9)
H22A0.53510.6771−0.08400.070*
C230.4340 (3)0.7258 (2)−0.01101 (18)0.0578 (9)
H23A0.36370.7078−0.03710.069*
C240.4363 (3)0.77059 (19)0.05528 (18)0.0514 (8)
H24A0.36650.78310.07300.062*
C250.5396 (3)0.79833 (17)0.09746 (16)0.0414 (7)
C260.5264 (2)0.84892 (18)0.16933 (16)0.0424 (7)
C270.4832 (3)0.93557 (18)0.14954 (17)0.0470 (8)
C280.5316 (3)0.9954 (2)0.10912 (19)0.0614 (9)
H28A0.59930.98550.08780.074*
C290.4774 (4)1.0712 (2)0.1008 (2)0.0726 (11)
H29A0.50881.11240.07330.087*
C300.3779 (4)1.0858 (2)0.1327 (2)0.0762 (12)
H30A0.34331.13700.12700.091*
C310.3284 (3)1.0264 (2)0.1728 (2)0.0682 (10)
H31A0.26051.03670.19380.082*
C320.3816 (3)0.9507 (2)0.18140 (17)0.0511 (8)
C330.3506 (3)0.8771 (2)0.22174 (17)0.0503 (8)
C340.2593 (3)0.8615 (3)0.2634 (2)0.0678 (11)
H34A0.20480.90180.26920.081*
C350.2510 (3)0.7854 (3)0.2959 (2)0.0734 (12)
H35A0.18990.77430.32350.088*
C360.3315 (3)0.7256 (3)0.28821 (19)0.0673 (10)
H36A0.32410.67460.31050.081*
C370.4236 (3)0.7407 (2)0.24757 (18)0.0548 (9)
H37A0.47850.70050.24250.066*
C380.4321 (3)0.81679 (19)0.21478 (16)0.0451 (8)
C390.5324 (3)0.5281 (3)0.1162 (2)0.0869 (13)
H39A0.57720.48050.13280.130*
H39B0.56550.57510.14370.130*
H39C0.53300.53600.06180.130*
C400.4118 (4)0.5169 (2)0.1319 (2)0.0696 (11)
C410.2259 (3)0.5774 (3)0.1255 (3)0.0903 (13)
H41A0.22320.57600.18070.108*
H41B0.18830.52870.10260.108*
C420.1664 (4)0.6520 (3)0.0910 (3)0.0979 (15)
H42A0.08690.65160.10030.147*
H42B0.16950.65270.03640.147*
H42C0.20430.69970.11420.147*
O30.3748 (3)0.45679 (18)0.15903 (17)0.0996 (10)
O40.3455 (2)0.58069 (16)0.11015 (16)0.0795 (8)
H20.677 (3)0.741 (2)0.223 (2)0.092 (14)*
H10.627 (3)0.883 (2)0.257 (2)0.098 (15)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0430 (13)0.0475 (14)0.0667 (15)−0.0008 (11)0.0142 (11)0.0074 (12)
O20.0447 (13)0.0490 (13)0.0467 (13)0.0032 (10)0.0036 (10)−0.0076 (11)
C10.0485 (19)0.0426 (19)0.065 (2)−0.0026 (16)0.0176 (17)0.0049 (17)
C20.082 (3)0.051 (2)0.084 (3)0.002 (2)0.018 (2)−0.008 (2)
C30.119 (4)0.057 (3)0.112 (4)0.005 (3)0.040 (3)−0.018 (3)
C40.107 (4)0.050 (3)0.155 (5)0.011 (3)0.068 (4)0.007 (3)
C50.063 (3)0.059 (3)0.132 (4)0.013 (2)0.037 (3)0.035 (3)
C60.050 (2)0.048 (2)0.089 (3)0.0038 (17)0.021 (2)0.021 (2)
C70.049 (2)0.066 (2)0.074 (3)−0.0098 (19)0.0057 (19)0.030 (2)
C80.071 (3)0.097 (4)0.094 (3)−0.016 (3)−0.007 (3)0.050 (3)
C90.104 (4)0.126 (5)0.071 (3)−0.048 (4)−0.016 (3)0.042 (3)
C100.099 (4)0.116 (4)0.054 (3)−0.047 (3)0.007 (2)0.004 (3)
C110.071 (3)0.079 (3)0.061 (2)−0.021 (2)0.011 (2)0.002 (2)
C120.053 (2)0.057 (2)0.053 (2)−0.0129 (18)0.0085 (16)0.0087 (17)
C130.0390 (18)0.0460 (18)0.0540 (19)−0.0014 (14)0.0100 (14)0.0024 (15)
C140.0471 (19)0.0391 (17)0.0466 (18)−0.0027 (14)0.0155 (15)−0.0051 (14)
C150.047 (2)0.056 (2)0.055 (2)−0.0029 (17)0.0090 (16)−0.0008 (17)
C160.056 (2)0.063 (2)0.063 (2)−0.0176 (18)0.0205 (18)−0.0044 (19)
C170.073 (3)0.053 (2)0.056 (2)−0.0111 (19)0.0217 (19)0.0012 (17)
C180.061 (2)0.048 (2)0.0491 (19)−0.0008 (17)0.0138 (16)0.0026 (16)
C190.0537 (19)0.0388 (17)0.0392 (16)0.0013 (15)0.0131 (14)−0.0020 (14)
C200.0490 (19)0.0391 (17)0.0389 (16)0.0011 (14)0.0066 (14)0.0019 (13)
C210.063 (2)0.050 (2)0.0453 (18)0.0062 (17)0.0116 (16)−0.0004 (15)
C220.083 (3)0.051 (2)0.0395 (18)−0.0038 (19)0.0034 (18)−0.0082 (16)
C230.066 (2)0.059 (2)0.0458 (19)−0.0139 (18)−0.0034 (17)−0.0015 (17)
C240.051 (2)0.054 (2)0.0489 (19)−0.0045 (16)0.0051 (16)0.0017 (16)
C250.0466 (19)0.0363 (16)0.0411 (16)−0.0015 (14)0.0054 (14)0.0038 (13)
C260.0416 (18)0.0440 (18)0.0418 (17)0.0010 (14)0.0059 (14)−0.0029 (14)
C270.055 (2)0.0431 (18)0.0416 (17)0.0042 (15)0.0021 (15)−0.0021 (15)
C280.078 (3)0.051 (2)0.057 (2)0.0031 (19)0.0170 (19)−0.0005 (17)
C290.110 (3)0.046 (2)0.061 (2)0.006 (2)0.008 (2)0.0046 (18)
C300.113 (4)0.055 (2)0.058 (2)0.033 (2)0.003 (2)−0.0008 (19)
C310.077 (3)0.072 (3)0.056 (2)0.029 (2)0.0095 (19)0.002 (2)
C320.053 (2)0.055 (2)0.0449 (18)0.0139 (17)0.0031 (15)−0.0025 (16)
C330.0410 (19)0.067 (2)0.0424 (17)0.0075 (17)0.0030 (14)−0.0042 (16)
C340.044 (2)0.102 (3)0.058 (2)0.012 (2)0.0087 (17)0.001 (2)
C350.052 (2)0.117 (4)0.052 (2)−0.015 (2)0.0106 (18)0.007 (2)
C360.067 (2)0.083 (3)0.051 (2)−0.018 (2)0.0041 (19)0.0135 (19)
C370.056 (2)0.055 (2)0.053 (2)−0.0053 (17)0.0055 (17)0.0032 (16)
C380.0438 (18)0.052 (2)0.0393 (17)−0.0020 (15)0.0046 (14)−0.0004 (15)
C390.072 (3)0.086 (3)0.099 (3)0.003 (2)−0.003 (2)0.013 (3)
C400.086 (3)0.062 (3)0.057 (2)−0.009 (2)−0.004 (2)0.015 (2)
C410.072 (3)0.103 (4)0.100 (3)−0.019 (3)0.027 (3)0.007 (3)
C420.071 (3)0.095 (3)0.130 (4)0.000 (3)0.024 (3)−0.001 (3)
O30.119 (2)0.086 (2)0.091 (2)−0.0147 (19)0.0023 (18)0.0400 (18)
O40.0705 (18)0.0692 (18)0.101 (2)−0.0052 (14)0.0190 (15)0.0229 (15)

Geometric parameters (Å, °)

O1—C131.423 (3)C22—C231.372 (5)
O1—H20.93 (4)C22—H22A0.9300
O2—C261.442 (3)C23—C241.368 (4)
O2—H10.88 (4)C23—H23A0.9300
C1—C21.375 (5)C24—C251.399 (4)
C1—C61.394 (4)C24—H24A0.9300
C1—C131.524 (4)C25—C261.529 (4)
C2—C31.394 (5)C26—C271.528 (4)
C2—H2A0.9300C26—C381.532 (4)
C3—C41.369 (6)C27—C281.372 (4)
C3—H3A0.9300C27—C321.396 (4)
C4—C51.373 (6)C28—C291.391 (5)
C4—H4A0.9300C28—H28A0.9300
C5—C61.388 (5)C29—C301.372 (5)
C5—H5A0.9300C29—H29A0.9300
C6—C71.457 (5)C30—C311.370 (5)
C7—C121.382 (5)C30—H30A0.9300
C7—C81.397 (5)C31—C321.384 (4)
C8—C91.370 (6)C31—H31A0.9300
C8—H8A0.9300C32—C331.464 (4)
C9—C101.375 (7)C33—C381.386 (4)
C9—H9A0.9300C33—C341.390 (4)
C10—C111.394 (5)C34—C351.378 (5)
C10—H10A0.9300C34—H34A0.9300
C11—C121.385 (5)C35—C361.374 (5)
C11—H11A0.9300C35—H35A0.9300
C12—C131.537 (4)C36—C371.386 (5)
C13—C141.534 (4)C36—H36A0.9300
C14—C151.396 (4)C37—C381.379 (4)
C14—C191.404 (4)C37—H37A0.9300
C15—C161.378 (4)C39—C401.478 (5)
C15—H15A0.9300C39—H39A0.9600
C16—C171.372 (5)C39—H39B0.9600
C16—H16A0.9300C39—H39C0.9600
C17—C181.377 (4)C40—O31.197 (4)
C17—H17A0.9300C40—O41.323 (4)
C18—C191.391 (4)C41—O41.454 (4)
C18—H18A0.9300C41—C421.491 (5)
C19—C201.514 (4)C41—H41A0.9700
C20—C211.393 (4)C41—H41B0.9700
C20—C251.403 (4)C42—H42A0.9600
C21—C221.383 (4)C42—H42B0.9600
C21—H21A0.9300C42—H42C0.9600
C13—O1—H2106 (2)C24—C23—H23A120.0
C26—O2—H1106 (3)C22—C23—H23A120.0
C2—C1—C6120.9 (3)C23—C24—C25122.5 (3)
C2—C1—C13128.0 (3)C23—C24—H24A118.7
C6—C1—C13111.1 (3)C25—C24—H24A118.7
C1—C2—C3118.5 (4)C24—C25—C20118.2 (3)
C1—C2—H2A120.8C24—C25—C26115.7 (3)
C3—C2—H2A120.8C20—C25—C26126.1 (3)
C4—C3—C2120.6 (5)O2—C26—C27110.9 (2)
C4—C3—H3A119.7O2—C26—C25108.4 (2)
C2—C3—H3A119.7C27—C26—C25112.5 (2)
C3—C4—C5121.3 (4)O2—C26—C38110.0 (2)
C3—C4—H4A119.4C27—C26—C38101.5 (2)
C5—C4—H4A119.4C25—C26—C38113.4 (2)
C4—C5—C6118.9 (4)C28—C27—C32120.5 (3)
C4—C5—H5A120.6C28—C27—C26129.3 (3)
C6—C5—H5A120.6C32—C27—C26110.2 (3)
C5—C6—C1119.9 (4)C27—C28—C29118.6 (3)
C5—C6—C7131.5 (4)C27—C28—H28A120.7
C1—C6—C7108.6 (3)C29—C28—H28A120.7
C12—C7—C8119.6 (4)C30—C29—C28120.5 (4)
C12—C7—C6109.0 (3)C30—C29—H29A119.7
C8—C7—C6131.4 (4)C28—C29—H29A119.7
C9—C8—C7118.7 (5)C31—C30—C29121.4 (3)
C9—C8—H8A120.6C31—C30—H30A119.3
C7—C8—H8A120.6C29—C30—H30A119.3
C8—C9—C10121.7 (5)C30—C31—C32118.5 (3)
C8—C9—H9A119.2C30—C31—H31A120.7
C10—C9—H9A119.2C32—C31—H31A120.7
C9—C10—C11120.3 (5)C31—C32—C27120.4 (3)
C9—C10—H10A119.8C31—C32—C33130.7 (3)
C11—C10—H10A119.8C27—C32—C33108.8 (3)
C12—C11—C10118.0 (4)C38—C33—C34119.7 (3)
C12—C11—H11A121.0C38—C33—C32109.1 (3)
C10—C11—H11A121.0C34—C33—C32131.1 (3)
C7—C12—C11121.6 (3)C35—C34—C33118.9 (3)
C7—C12—C13111.0 (3)C35—C34—H34A120.6
C11—C12—C13127.4 (3)C33—C34—H34A120.6
O1—C13—C1107.5 (2)C36—C35—C34121.1 (3)
O1—C13—C14112.8 (2)C36—C35—H35A119.4
C1—C13—C14112.6 (2)C34—C35—H35A119.4
O1—C13—C12110.2 (2)C35—C36—C37120.5 (4)
C1—C13—C12100.4 (3)C35—C36—H36A119.7
C14—C13—C12112.7 (3)C37—C36—H36A119.7
C15—C14—C19118.1 (3)C38—C37—C36118.5 (3)
C15—C14—C13117.2 (3)C38—C37—H37A120.7
C19—C14—C13124.8 (3)C36—C37—H37A120.7
C16—C15—C14122.4 (3)C37—C38—C33121.2 (3)
C16—C15—H15A118.8C37—C38—C26128.4 (3)
C14—C15—H15A118.8C33—C38—C26110.3 (3)
C17—C16—C15119.4 (3)C40—C39—H39A109.5
C17—C16—H16A120.3C40—C39—H39B109.5
C15—C16—H16A120.3H39A—C39—H39B109.5
C16—C17—C18119.2 (3)C40—C39—H39C109.5
C16—C17—H17A120.4H39A—C39—H39C109.5
C18—C17—H17A120.4H39B—C39—H39C109.5
C17—C18—C19122.7 (3)O3—C40—O4122.3 (4)
C17—C18—H18A118.7O3—C40—C39125.3 (4)
C19—C18—H18A118.7O4—C40—C39112.4 (3)
C18—C19—C14118.3 (3)O4—C41—C42107.5 (3)
C18—C19—C20114.4 (3)O4—C41—H41A110.2
C14—C19—C20126.7 (3)C42—C41—H41A110.2
C21—C20—C25117.8 (3)O4—C41—H41B110.2
C21—C20—C19114.2 (3)C42—C41—H41B110.2
C25—C20—C19127.6 (3)H41A—C41—H41B108.5
C22—C21—C20123.2 (3)C41—C42—H42A109.5
C22—C21—H21A118.4C41—C42—H42B109.5
C20—C21—H21A118.4H42A—C42—H42B109.5
C23—C22—C21118.4 (3)C41—C42—H42C109.5
C23—C22—H22A120.8H42A—C42—H42C109.5
C21—C22—H22A120.8H42B—C42—H42C109.5
C24—C23—C22120.0 (3)C40—O4—C41117.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.88 (4)1.90 (4)2.779 (3)173 (4)
O1—H2···O20.93 (4)1.84 (4)2.739 (3)161 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2155).

References

  • Barbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, E. K. & Wierig, A. (1993). Supramol. Chem.1, 331–336.
  • Ibragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Kohnke, K. (2001). J. Phys. Org. Chem.14, 697–703.
  • Sardone, N. (1996). Private communication (refcode NABNIN). CCDC, Union Road, Cambridge, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  • Sumarna, O., Seidel, J., Weber, E., Seichter, W., Ibragimov, B. T. & Beketov, K. M. (2003). Cryst. Growth Des.3, 541–546.
  • Weber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl.32, 606–608.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography