PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): m992.
Published online 2008 July 5. doi:  10.1107/S1600536808019740
PMCID: PMC2962234

Dichlorido[1-(1,10-phenanthrolin-2-yl)-2-pyridone]cadmium(II)

Abstract

In the title mononuclear complex, [CdCl2(C17H11N3O)], the CdII ion assumes a distorted trigonal–bipyramidal coordination geometry. The pyridone plane is twisted out of the 1,10-phenanthroline mean plane by 43.8 (3)°. In the crystal structure, short inter­molecular distances [3.627 (4)–3.671 (4) Å] between the centroids of the six- and five-membered Cd-containing rings suggest the existence of π–π inter­actions, which link the mol­ecules into stacks along the a axis.

Related literature

For a related structure, see Liu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m992-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C17H11N3O)]
  • M r = 456.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m992-efi1.jpg
  • a = 7.5623 (13) Å
  • b = 14.105 (3) Å
  • c = 15.155 (3) Å
  • β = 97.728 (3)°
  • V = 1601.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.71 mm−1
  • T = 298 (2) K
  • 0.11 × 0.06 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008 [triangle]) T min = 0.835, T max = 0.920
  • 9188 measured reflections
  • 3476 independent reflections
  • 2229 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.136
  • S = 1.05
  • 3476 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 1.15 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Centroid–centroid distances (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019740/cv2426sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019740/cv2426Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry, and the complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as bridging ligand and termial ligand has been reported (Liu et al., 2008). Here I report the crystal structure of the title complex with 1-(1,10-phenanthrolin-2-yl)-2-pyridone as terminal ligand.

Fig. 1 shows the title coordination structure, revealing that the atom Cd is in a distorted trigonal bipyramidal environment. The dihedral angle between the pyridine ring plane and 1,10-phenanthroline ring system plane is 43.8 (3)°, which is smaller than that of the binuclear CdII complex (Liu et al., 2008). The crystal packing exhibits weak π–π stacking interactions involving symmetry-related neigbouring complexes, the relevant distances being Cg1···Cg2i = 3.627 (4) Å and Cg1···Cg2iperp = 3.407 Å and α = 4.70°; Cg2···Cg2i = 3.631 (4) Å and Cg2···Cg2iperp = 3.464 Å and α = 0.00°; Cg2···Cg3ii =3.671 (4) Å and Cg2···Cg3iiperp = 3.467 Å and α = 1.26° [symmetry codes: (i) -x, 2-y, -z; (ii) 1-x, 2-y, -z; Cg1, Cg2 and Cg3 are centroids of the Cd1/N2/N3/C8/C13, C8/C9/C11–C14 and N3/C13–C17 rings, respectively; Cgi···Cgjperp is the perpendicular distance from ring Cgi to ring Cgj; α is the dihedral angle between ring plane Cgi and ring plane Cgj].

Experimental

10 ml Methanol solution of 1-(1,10-phenanthrolin-2-yl)-2-pyridone (0.1620 g, 0.593 mmol) was added into 10 ml methanol solution containing CdCl2.2.5H2O (0.1352 g, 0.592 mmol) and the mixture was stirred for a few minutes. The colourless single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Crystal data

[CdCl2(C17H11N3O)]F000 = 896
Mr = 456.59Dx = 1.893 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 970 reflections
a = 7.5623 (13) Åθ = 2.7–18.8º
b = 14.105 (3) ŵ = 1.71 mm1
c = 15.155 (3) ÅT = 298 (2) K
β = 97.728 (3)ºBlock, colourless
V = 1601.9 (5) Å30.11 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3476 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.071
T = 298(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2008)h = −9→9
Tmin = 0.835, Tmax = 0.920k = −17→17
9188 measured reflectionsl = −12→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0492P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3476 reflectionsΔρmax = 1.15 e Å3
217 parametersΔρmin = −0.83 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1695 (9)0.9518 (5)0.3440 (5)0.0366 (17)
C20.1891 (10)0.9363 (6)0.4389 (5)0.050 (2)
H20.15600.87810.46030.060*
C30.2543 (10)1.0039 (6)0.4973 (6)0.052 (2)
H30.26380.99220.55810.063*
C40.3073 (11)1.0914 (6)0.4668 (6)0.055 (2)
H40.35511.13730.50720.066*
C50.2892 (10)1.1088 (5)0.3801 (6)0.049 (2)
H50.32561.16720.36040.059*
C60.1179 (10)1.1614 (5)0.2066 (6)0.046 (2)
H60.08531.20010.25140.056*
C70.1882 (9)1.0723 (5)0.2263 (5)0.0389 (18)
C80.2128 (8)1.0430 (5)0.0795 (5)0.0326 (16)
C90.1472 (9)1.1317 (5)0.0533 (5)0.0395 (18)
C100.0974 (9)1.1916 (5)0.1209 (6)0.047 (2)
H100.05081.25150.10650.057*
C110.1306 (10)1.1576 (5)−0.0390 (6)0.047 (2)
H110.08471.2168−0.05660.057*
C120.1796 (9)1.0986 (6)−0.1005 (6)0.048 (2)
H120.16711.1171−0.15990.058*
C130.2654 (8)0.9785 (5)0.0133 (4)0.0305 (16)
C140.2512 (9)1.0072 (5)−0.0751 (5)0.0380 (18)
C150.3059 (10)0.9431 (6)−0.1369 (5)0.048 (2)
H150.29870.9598−0.19670.058*
C160.3689 (10)0.8574 (6)−0.1090 (5)0.049 (2)
H160.40760.8150−0.14940.059*
C170.3761 (10)0.8321 (5)−0.0188 (5)0.045 (2)
H170.41580.7719−0.00060.054*
Cd10.31562 (7)0.85238 (4)0.18959 (4)0.0400 (2)
Cl10.5861 (3)0.86363 (15)0.29470 (14)0.0613 (6)
Cl20.2258 (3)0.68924 (14)0.15321 (14)0.0580 (6)
N10.2182 (7)1.0428 (4)0.3185 (4)0.0379 (15)
N20.2331 (7)1.0138 (4)0.1660 (4)0.0369 (14)
N30.3273 (7)0.8923 (4)0.0409 (4)0.0330 (13)
O10.1125 (7)0.8907 (3)0.2885 (3)0.0460 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.034 (4)0.034 (4)0.042 (4)0.001 (3)0.007 (4)0.005 (4)
C20.053 (5)0.048 (5)0.048 (5)−0.009 (4)0.004 (4)−0.001 (4)
C30.065 (5)0.056 (5)0.036 (4)0.001 (4)0.007 (4)−0.008 (4)
C40.069 (6)0.050 (5)0.045 (5)−0.010 (4)0.005 (5)−0.014 (4)
C50.058 (5)0.036 (4)0.053 (5)0.001 (4)0.009 (5)−0.006 (4)
C60.043 (4)0.033 (4)0.064 (6)0.002 (3)0.010 (4)−0.013 (4)
C70.036 (4)0.042 (4)0.039 (4)0.002 (3)0.009 (4)−0.001 (4)
C80.028 (4)0.029 (4)0.040 (4)−0.002 (3)0.004 (3)0.001 (3)
C90.024 (4)0.038 (4)0.055 (5)−0.003 (3)0.000 (4)0.003 (4)
C100.039 (4)0.028 (4)0.074 (6)0.010 (3)0.002 (4)0.009 (4)
C110.050 (5)0.035 (4)0.054 (5)−0.007 (4)−0.008 (4)0.022 (4)
C120.044 (5)0.051 (5)0.045 (5)−0.011 (4)−0.011 (4)0.018 (4)
C130.027 (4)0.033 (4)0.030 (4)−0.007 (3)−0.001 (3)0.000 (3)
C140.037 (4)0.049 (5)0.026 (4)−0.010 (4)−0.004 (3)−0.002 (4)
C150.055 (5)0.058 (5)0.031 (4)−0.024 (4)0.007 (4)0.001 (4)
C160.046 (5)0.057 (5)0.047 (5)−0.012 (4)0.013 (4)−0.013 (5)
C170.052 (5)0.029 (4)0.054 (5)−0.001 (3)0.010 (4)−0.010 (4)
Cd10.0511 (4)0.0353 (3)0.0328 (3)0.0065 (3)0.0029 (2)0.0033 (3)
Cl10.0558 (12)0.0765 (15)0.0481 (12)−0.0004 (11)−0.0063 (10)0.0119 (12)
Cl20.0922 (16)0.0353 (10)0.0463 (12)−0.0013 (11)0.0083 (12)0.0006 (10)
N10.039 (4)0.038 (3)0.037 (4)−0.003 (3)0.005 (3)−0.003 (3)
N20.028 (3)0.041 (3)0.041 (4)0.001 (3)0.001 (3)0.000 (3)
N30.037 (3)0.032 (3)0.030 (3)−0.001 (3)0.003 (3)0.002 (3)
O10.058 (3)0.037 (3)0.045 (3)−0.010 (3)0.012 (3)−0.006 (3)

Geometric parameters (Å, °)

C1—O11.239 (8)C9—C111.436 (11)
C1—N11.404 (8)C10—H100.9300
C1—C21.442 (10)C11—C121.337 (11)
C2—C31.348 (10)C11—H110.9300
C2—H20.9300C12—C141.431 (10)
C3—C41.394 (11)C12—H120.9300
C3—H30.9300C13—N31.348 (8)
C4—C51.326 (11)C13—C141.390 (9)
C4—H40.9300C14—C151.403 (10)
C5—N11.375 (9)C15—C161.347 (10)
C5—H50.9300C15—H150.9300
C6—C101.356 (11)C16—C171.407 (10)
C6—C71.382 (9)C16—H160.9300
C6—H60.9300C17—N31.329 (8)
C7—N21.310 (8)C17—H170.9300
C7—N11.446 (9)Cd1—N32.336 (6)
C8—N21.362 (8)Cd1—O12.349 (5)
C8—C91.384 (9)Cd1—N22.376 (6)
C8—C131.450 (9)Cd1—Cl12.423 (2)
C9—C101.417 (11)Cd1—Cl22.441 (2)
Cg1···Cg2i3.627 (4)Cg2···Cg3ii3.671 (4)
Cg2···Cg2i3.631 (4)
O1—C1—N1121.9 (7)N3—C13—C14122.7 (6)
O1—C1—C2123.4 (7)N3—C13—C8117.9 (6)
N1—C1—C2114.6 (7)C14—C13—C8119.4 (6)
C3—C2—C1121.8 (7)C13—C14—C15117.7 (7)
C3—C2—H2119.1C13—C14—C12119.9 (7)
C1—C2—H2119.1C15—C14—C12122.4 (7)
C2—C3—C4120.3 (8)C16—C15—C14119.5 (7)
C2—C3—H3119.9C16—C15—H15120.2
C4—C3—H3119.9C14—C15—H15120.3
C5—C4—C3119.7 (8)C15—C16—C17119.9 (7)
C5—C4—H4120.1C15—C16—H16120.1
C3—C4—H4120.1C17—C16—H16120.1
C4—C5—N1121.8 (8)N3—C17—C16121.4 (7)
C4—C5—H5119.1N3—C17—H17119.3
N1—C5—H5119.1C16—C17—H17119.3
C10—C6—C7119.0 (7)N3—Cd1—O1132.29 (19)
C10—C6—H6120.5N3—Cd1—N270.5 (2)
C7—C6—H6120.5O1—Cd1—N272.21 (18)
N2—C7—C6123.4 (7)N3—Cd1—Cl1118.71 (14)
N2—C7—N1118.2 (6)O1—Cd1—Cl197.58 (15)
C6—C7—N1118.5 (7)N2—Cd1—Cl1102.58 (15)
N2—C8—C9122.6 (6)N3—Cd1—Cl293.15 (14)
N2—C8—C13118.0 (6)O1—Cd1—Cl2100.09 (13)
C9—C8—C13119.3 (7)N2—Cd1—Cl2144.10 (15)
C8—C9—C10116.8 (7)Cl1—Cd1—Cl2113.26 (8)
C8—C9—C11119.4 (7)C5—N1—C1121.7 (6)
C10—C9—C11123.8 (7)C5—N1—C7117.2 (6)
C6—C10—C9119.8 (7)C1—N1—C7121.0 (6)
C6—C10—H10120.1C7—N2—C8118.4 (6)
C9—C10—H10120.1C7—N2—Cd1125.8 (5)
C12—C11—C9121.7 (7)C8—N2—Cd1115.4 (4)
C12—C11—H11119.2C17—N3—C13118.8 (6)
C9—C11—H11119.2C17—N3—Cd1123.5 (5)
C11—C12—C14120.2 (7)C13—N3—Cd1117.4 (4)
C11—C12—H12119.9C1—O1—Cd1113.3 (4)
C14—C12—H12119.9
O1—C1—C2—C3178.9 (7)N2—C7—N1—C1−46.0 (9)
N1—C1—C2—C3−1.8 (10)C6—C7—N1—C1135.6 (7)
C1—C2—C3—C4−0.9 (12)C6—C7—N2—C81.3 (10)
C2—C3—C4—C51.7 (13)N1—C7—N2—C8−177.0 (6)
C3—C4—C5—N10.4 (13)C6—C7—N2—Cd1−170.8 (5)
C10—C6—C7—N2−1.5 (11)N1—C7—N2—Cd110.9 (9)
C10—C6—C7—N1176.8 (7)C9—C8—N2—C70.1 (10)
N2—C8—C9—C10−1.2 (10)C13—C8—N2—C7179.1 (6)
C13—C8—C9—C10179.8 (6)C9—C8—N2—Cd1173.0 (5)
N2—C8—C9—C11179.6 (6)C13—C8—N2—Cd1−8.0 (7)
C13—C8—C9—C110.7 (9)N3—Cd1—N2—C7−179.8 (6)
C7—C6—C10—C90.2 (11)O1—Cd1—N2—C730.5 (5)
C8—C9—C10—C61.0 (10)Cl1—Cd1—N2—C7−63.5 (6)
C11—C9—C10—C6−179.9 (7)Cl2—Cd1—N2—C7113.1 (5)
C8—C9—C11—C12−1.0 (11)N3—Cd1—N2—C87.9 (4)
C10—C9—C11—C12179.9 (7)O1—Cd1—N2—C8−141.8 (5)
C9—C11—C12—C14−0.2 (11)Cl1—Cd1—N2—C8124.2 (4)
N2—C8—C13—N31.6 (9)Cl2—Cd1—N2—C8−59.2 (5)
C9—C8—C13—N3−179.4 (6)C16—C17—N3—C131.8 (10)
N2—C8—C13—C14−178.2 (6)C16—C17—N3—Cd1175.4 (5)
C9—C8—C13—C140.9 (9)C14—C13—N3—C17−0.3 (9)
N3—C13—C14—C15−0.6 (10)C8—C13—N3—C17179.9 (6)
C8—C13—C14—C15179.1 (6)C14—C13—N3—Cd1−174.4 (5)
N3—C13—C14—C12178.2 (6)C8—C13—N3—Cd15.9 (7)
C8—C13—C14—C12−2.1 (10)O1—Cd1—N3—C17−140.4 (5)
C11—C12—C14—C131.8 (10)N2—Cd1—N3—C17179.1 (6)
C11—C12—C14—C15−179.4 (7)Cl1—Cd1—N3—C1785.1 (5)
C13—C14—C15—C160.1 (10)Cl2—Cd1—N3—C17−33.7 (5)
C12—C14—C15—C16−178.7 (7)O1—Cd1—N3—C1333.3 (5)
C14—C15—C16—C171.2 (11)N2—Cd1—N3—C13−7.2 (4)
C15—C16—C17—N3−2.3 (11)Cl1—Cd1—N3—C13−101.2 (4)
C4—C5—N1—C1−3.3 (11)Cl2—Cd1—N3—C13140.0 (4)
C4—C5—N1—C7174.1 (7)N1—C1—O1—Cd159.8 (7)
O1—C1—N1—C5−176.9 (6)C2—C1—O1—Cd1−121.0 (6)
C2—C1—N1—C53.9 (9)N3—Cd1—O1—C1−104.1 (5)
O1—C1—N1—C75.9 (10)N2—Cd1—O1—C1−64.0 (5)
C2—C1—N1—C7−173.4 (6)Cl1—Cd1—O1—C136.8 (5)
N2—C7—N1—C5136.6 (7)Cl2—Cd1—O1—C1152.2 (5)
C6—C7—N1—C5−41.8 (9)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2426).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography