PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1508.
Published online 2008 July 16. doi:  10.1107/S1600536808021363
PMCID: PMC2962229

Methyl 4-eth­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

Abstract

In the crystal structure of the title compound, C13H15NO5S, the mol­ecules exhibit weak S=O(...)H—C and C=O(...)H—C inter­molecular inter­actions and arrange themselves into centrosymmetric dimers by means of π–π inter­actions (ring centroids are separated by 3.619 Å, while the closest C(...)C contacts are 3.514 Å). 1,2-Benzothia­zines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis.

Related literature

For related literature on benzothia­zines, see: Ahmad et al. (2008 [triangle]); Bihovsky et al. (2004 [triangle]); Fabiola et al. (1998 [triangle]); Golič et al. (1987 [triangle]); Kojić-Prodić & Rużić-Toroš (1982 [triangle]); Lombardino et al. (1971 [triangle]); Reck et al. (1988 [triangle]); Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1508-scheme1.jpg

Experimental

Crystal data

  • C13H15NO5S
  • M r = 297.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1508-efi1.jpg
  • a = 7.9810 (4) Å
  • b = 8.1215 (4) Å
  • c = 10.8173 (6) Å
  • α = 89.4783 (7)°
  • β = 79.5124 (8)°
  • γ = 79.3434 (7)°
  • V = 677.33 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 150 (2) K
  • 0.57 × 0.17 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.867, T max = 0.975
  • 8153 measured reflections
  • 4069 independent reflections
  • 3678 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.096
  • S = 1.07
  • 4069 reflections
  • 184 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808021363/bt2743sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808021363/bt2743Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to PCSIR Laboratories Complex, Lahore, for the provision of necessary chemicals.

supplementary crystallographic information

Comment

1,2-Benzothiazine 1,1-dioxides are heterocyclic compounds with numerous types of biological activity reported. For example, some are found useful as medicaments in the treatment of inflammation and rheumatoid arthritis (Lombardino et al., 1971). Other 1,2-benzothiazine 1,1-dioxides exhibit hyperlipidemic, anti-bacterial and Calpain I inhibition activities while they have also been found useful as endothelin receptor antagonists (Bihovsky et al., 2004). In continuation to our ongoing work on the synthesis of benzothiazine 1,1-dioxides (Zia-ur-Rehman et al., 2005, 2006, 2007; Ahmad et al., 2008), we herein report the synthesis and crystal structure of the title compound, (I).

In (I), the thiazine ring exhibits a distorted half-chair conformation with S1/C1/C6/C7 relatively planar (within +/- 0.0336 (6) Å) and N1 showing significant deviation from this plane due to its pyramidal geometry with the methyl group pointing approximately perpendicular to the plane. Compared with related molecules having no substitution at O3 [1.352 (9) Å; Golič et al., 1987; 1.339 (15) Å; Kojić-Prodić & Rużić-Toroš, 1982; 1.350 (9) Å; Reck et al., 1988; 1.336 (2) Å; Fabiola et al., 1998], C9—O4 in (I) is found to be shorter due to the absence of hydrogen bonding at O4. Each molecule of (I) is linked to its neighbours through inter-molecular C-H···S and C-H···O interactions giving rise to chains of molecules parallel to b (Fig. 2). Additionally, the molecules in are linked into centro-symmetric dimers by means of π-π interactions. The ring centroids are separated by 3.619 Å, while the closest C···C contacts are between C2 and C4'', separated by 3.514 Å (symmetry operator -x, -y, 1 - z).

Experimental

A mixture of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (1.33 g; 5.0 mmoles), ethyl iodide (3.90 g; 25.0 mmoles), anhydrous potassium carbonate (10.0 g) and acetonitrile (100 ml) was stirred and refluxed for a period of 7 h. After removal of acetonitrile and excess methyl iodide under vacuum, chloroform (30 ml) was added and the resultant mixture was filtered. The filtrate was washed with water to remove potassium carbonate, dried with anhydrous sodium sulfate and filtered. Slow evaporation of the solvent afforded the crystalline product. Yield:1.26 g; 77.8%; m.p.147°C.

Refinement

H atoms were placed in geometric positions (C—H distance = 0.95 Å for aryl-H and mthylene-H; 0.98 Å for methyl-H) using a riding model with rotational freedom in the case of the methyl group. U values were set to 1.2Ueq of the carrier atom (1.5U for methyl-H).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
Fig. 2.
Packing plot showing the two unique weak H-bonds (thin dashed lines) and π-π interactions (thick dashed lines).

Crystal data

C13H15NO5SZ = 2
Mr = 297.32F000 = 312
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.9810 (4) ÅCell parameters from 4878 reflections
b = 8.1215 (4) Åθ = 2.6–30.5º
c = 10.8173 (6) ŵ = 0.26 mm1
α = 89.4783 (7)ºT = 150 (2) K
β = 79.5124 (8)ºBlock, colourless
γ = 79.3434 (7)º0.57 × 0.17 × 0.10 mm
V = 677.33 (6) Å3

Data collection

Bruker APEXII CCD diffractometer4069 independent reflections
Radiation source: fine-focus sealed tube3678 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.014
T = 150(2) Kθmax = 30.6º
ω rotation with narrow frames scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2007)h = −11→11
Tmin = 0.867, Tmax = 0.975k = −11→11
8153 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1549P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4069 reflectionsΔρmax = 0.47 e Å3
184 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.37350 (11)0.28852 (10)0.19858 (8)0.01854 (16)
C110.32384 (14)0.38127 (14)0.08880 (10)0.0245 (2)
H11A0.41410.34750.01450.037*
H11B0.31070.50190.10520.037*
H11C0.21370.35600.07380.037*
S10.24645 (3)0.32872 (3)0.33583 (2)0.02022 (8)
O10.34949 (12)0.28319 (11)0.43054 (8)0.02893 (18)
O20.15077 (12)0.49632 (10)0.33569 (9)0.0320 (2)
C10.10979 (13)0.18357 (12)0.33574 (9)0.01836 (18)
C2−0.06595 (13)0.22200 (14)0.38733 (10)0.0230 (2)
H2−0.11770.33110.42070.028*
C3−0.16426 (14)0.09717 (16)0.38904 (10)0.0268 (2)
H3−0.28510.12130.42230.032*
C4−0.08623 (15)−0.06293 (15)0.34218 (10)0.0259 (2)
H4−0.1538−0.14830.34630.031*
C50.08906 (14)−0.09988 (13)0.28949 (10)0.02141 (19)
H50.1406−0.20990.25800.026*
C60.18987 (12)0.02506 (12)0.28280 (9)0.01735 (17)
C70.37251 (12)−0.00786 (12)0.21908 (9)0.01697 (17)
O30.45163 (10)−0.17111 (9)0.19875 (7)0.02058 (15)
C120.49827 (15)−0.25298 (13)0.31109 (10)0.0239 (2)
H12A0.3954−0.28670.36330.029*
H12B0.5423−0.17530.36170.029*
C130.63614 (18)−0.40461 (15)0.27026 (14)0.0356 (3)
H13A0.5911−0.48100.22070.053*
H13B0.6698−0.46190.34460.053*
H13C0.7375−0.36990.21890.053*
C80.45807 (12)0.11773 (12)0.17707 (9)0.01727 (17)
C90.64295 (13)0.08859 (13)0.11182 (9)0.01947 (18)
O40.72988 (11)−0.04393 (11)0.07302 (9)0.0333 (2)
O50.70186 (10)0.23360 (10)0.10291 (8)0.02397 (16)
C100.88320 (14)0.21929 (15)0.04958 (11)0.0264 (2)
H10A0.95260.14250.09940.040*
H10B0.91560.32990.05030.040*
H10C0.90470.1758−0.03720.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0194 (4)0.0142 (3)0.0198 (4)−0.0011 (3)0.0003 (3)0.0009 (3)
C110.0246 (5)0.0219 (5)0.0254 (5)−0.0017 (4)−0.0033 (4)0.0062 (4)
S10.02258 (13)0.01530 (12)0.02126 (13)−0.00367 (9)0.00029 (9)−0.00292 (8)
O10.0339 (4)0.0336 (4)0.0221 (4)−0.0119 (3)−0.0065 (3)−0.0039 (3)
O20.0330 (4)0.0152 (4)0.0405 (5)−0.0009 (3)0.0084 (4)−0.0039 (3)
C10.0194 (4)0.0180 (4)0.0173 (4)−0.0033 (3)−0.0025 (3)0.0017 (3)
C20.0203 (4)0.0257 (5)0.0204 (4)−0.0009 (4)−0.0006 (4)0.0008 (4)
C30.0194 (4)0.0379 (6)0.0230 (5)−0.0080 (4)−0.0015 (4)0.0020 (4)
C40.0243 (5)0.0325 (5)0.0246 (5)−0.0137 (4)−0.0058 (4)0.0048 (4)
C50.0241 (5)0.0204 (4)0.0219 (4)−0.0074 (4)−0.0067 (4)0.0027 (4)
C60.0184 (4)0.0171 (4)0.0169 (4)−0.0035 (3)−0.0039 (3)0.0019 (3)
C70.0189 (4)0.0143 (4)0.0175 (4)−0.0017 (3)−0.0041 (3)−0.0008 (3)
O30.0266 (4)0.0134 (3)0.0204 (3)−0.0003 (3)−0.0040 (3)−0.0010 (2)
C120.0284 (5)0.0179 (4)0.0251 (5)0.0011 (4)−0.0094 (4)0.0004 (4)
C130.0396 (7)0.0210 (5)0.0446 (7)0.0095 (5)−0.0183 (6)−0.0072 (5)
C80.0171 (4)0.0153 (4)0.0185 (4)−0.0014 (3)−0.0023 (3)−0.0010 (3)
C90.0186 (4)0.0202 (4)0.0190 (4)−0.0033 (3)−0.0022 (3)−0.0012 (3)
O40.0237 (4)0.0231 (4)0.0472 (5)−0.0014 (3)0.0062 (4)−0.0086 (4)
O50.0175 (3)0.0207 (3)0.0323 (4)−0.0045 (3)0.0003 (3)−0.0009 (3)
C100.0176 (4)0.0304 (5)0.0299 (5)−0.0059 (4)0.0002 (4)0.0026 (4)

Geometric parameters (Å, °)

N1—C81.4270 (12)C5—H50.9500
N1—C111.4762 (13)C6—C71.4713 (13)
N1—S11.6363 (9)C7—C81.3599 (13)
C11—H11A0.9800C7—O31.3602 (11)
C11—H11B0.9800O3—C121.4546 (12)
C11—H11C0.9800C12—C131.5014 (15)
S1—O11.4318 (9)C12—H12A0.9900
S1—O21.4324 (8)C12—H12B0.9900
S1—C11.7479 (10)C13—H13A0.9800
C1—C21.3901 (14)C13—H13B0.9800
C1—C61.4035 (13)C13—H13C0.9800
C2—C31.3900 (16)C8—C91.4920 (13)
C2—H20.9500C9—O41.2008 (13)
C3—C41.3904 (17)C9—O51.3429 (12)
C3—H30.9500O5—C101.4409 (12)
C4—C51.3891 (15)C10—H10A0.9800
C4—H40.9500C10—H10B0.9800
C5—C61.4006 (14)C10—H10C0.9800
C8—N1—C11116.99 (8)C5—C6—C7120.92 (9)
C8—N1—S1114.71 (6)C1—C6—C7121.18 (9)
C11—N1—S1118.75 (7)C8—C7—O3120.74 (9)
N1—C11—H11A109.5C8—C7—C6122.18 (9)
N1—C11—H11B109.5O3—C7—C6117.02 (8)
H11A—C11—H11B109.5C7—O3—C12113.59 (7)
N1—C11—H11C109.5O3—C12—C13107.98 (9)
H11A—C11—H11C109.5O3—C12—H12A110.1
H11B—C11—H11C109.5C13—C12—H12A110.1
O1—S1—O2119.30 (6)O3—C12—H12B110.1
O1—S1—N1107.81 (5)C13—C12—H12B110.1
O2—S1—N1108.08 (5)H12A—C12—H12B108.4
O1—S1—C1108.19 (5)C12—C13—H13A109.5
O2—S1—C1110.56 (5)C12—C13—H13B109.5
N1—S1—C1101.38 (5)H13A—C13—H13B109.5
C2—C1—C6122.35 (9)C12—C13—H13C109.5
C2—C1—S1122.00 (8)H13A—C13—H13C109.5
C6—C1—S1115.63 (7)H13B—C13—H13C109.5
C3—C2—C1118.52 (10)C7—C8—N1120.24 (9)
C3—C2—H2120.7C7—C8—C9123.51 (9)
C1—C2—H2120.7N1—C8—C9116.22 (8)
C2—C3—C4120.16 (10)O4—C9—O5123.71 (9)
C2—C3—H3119.9O4—C9—C8126.14 (9)
C4—C3—H3119.9O5—C9—C8110.15 (8)
C5—C4—C3120.97 (10)C9—O5—C10115.19 (8)
C5—C4—H4119.5O5—C10—H10A109.5
C3—C4—H4119.5O5—C10—H10B109.5
C4—C5—C6120.01 (10)H10A—C10—H10B109.5
C4—C5—H5120.0O5—C10—H10C109.5
C6—C5—H5120.0H10A—C10—H10C109.5
C5—C6—C1117.87 (9)H10B—C10—H10C109.5
C8—N1—S1—O158.91 (8)S1—C1—C6—C7−6.73 (12)
C11—N1—S1—O1−155.79 (8)C5—C6—C7—C8159.51 (10)
C8—N1—S1—O2−170.89 (7)C1—C6—C7—C8−18.73 (14)
C11—N1—S1—O2−25.58 (9)C5—C6—C7—O3−17.78 (13)
C8—N1—S1—C1−54.62 (8)C1—C6—C7—O3163.98 (9)
C11—N1—S1—C190.69 (8)C8—C7—O3—C12106.82 (11)
O1—S1—C1—C2104.51 (9)C6—C7—O3—C12−75.85 (11)
O2—S1—C1—C2−27.82 (10)C7—O3—C12—C13−159.92 (9)
N1—S1—C1—C2−142.26 (9)O3—C7—C8—N1179.78 (8)
O1—S1—C1—C6−74.15 (9)C6—C7—C8—N12.59 (14)
O2—S1—C1—C6153.53 (8)O3—C7—C8—C9−2.63 (15)
N1—S1—C1—C639.09 (8)C6—C7—C8—C9−179.82 (9)
C6—C1—C2—C31.63 (15)C11—N1—C8—C7−107.70 (11)
S1—C1—C2—C3−176.93 (8)S1—N1—C8—C738.24 (12)
C1—C2—C3—C41.25 (16)C11—N1—C8—C974.55 (11)
C2—C3—C4—C5−2.02 (17)S1—N1—C8—C9−139.52 (8)
C3—C4—C5—C6−0.10 (16)C7—C8—C9—O411.14 (17)
C4—C5—C6—C12.85 (15)N1—C8—C9—O4−171.18 (10)
C4—C5—C6—C7−175.45 (9)C7—C8—C9—O5−168.23 (9)
C2—C1—C6—C5−3.67 (15)N1—C8—C9—O59.45 (12)
S1—C1—C6—C5174.98 (7)O4—C9—O5—C10−3.71 (15)
C2—C1—C6—C7174.62 (9)C8—C9—O5—C10175.68 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.513.2726 (13)137
C13—H13A···O5i0.982.583.3715 (15)138

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2743).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788. [PMC free article] [PubMed]
  • Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett.14, 1035–1038. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  • Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
  • Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.
  • Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.
  • Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem.14, 1171–1175. [PubMed]
  • Reck, G., Dietz, G., Laban, G., Gunter, W., Bannier, G. & Hohne, E. (1988). Pharmazie, 43, 477–481. [PubMed]
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zia-ur-Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc 26, 1171–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography