PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1613–o1614.
Published online 2008 July 31. doi:  10.1107/S1600536808023416
PMCID: PMC2962225

X-ray and computational structural study of (E)-2-(4-chloro­phenyl­imino­meth­yl)-4-methoxy­phenol

Abstract

In the mol­ecule of the title compound, C14H12ClNO2, the two aromatic rings are oriented at a dihedral angle of 5.92 (7)°. An intra­molecular O—H(...)N hydrogen bond results in the formation of a nearly planar six-membered ring, which is oriented at dihedral angles of 1.55 (4) and 5.95 (4)° with respect to the phenol and chlorophenyl rings, respectively. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Özek et al. (2007 [triangle]); Odabaşoğlu, Büyükgüngör et al. (2007 [triangle]); Odabaşoğlu, Arslan et al. (2007 [triangle]); Albayrak et al. (2005 [triangle]); Elerman et al. (1995 [triangle]). For general background, see: Friesner (2005 [triangle]); Liu et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1613-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO2
  • M r = 261.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1613-efi5.jpg
  • a = 21.2642 (19) Å
  • b = 4.7101 (3) Å
  • c = 12.2175 (12) Å
  • β = 93.361 (8)°
  • V = 1221.56 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 K
  • 0.68 × 0.44 × 0.21 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.825, T max = 0.925
  • 10205 measured reflections
  • 2364 independent reflections
  • 1789 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.099
  • S = 1.00
  • 2364 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and GAUSSIAN (Frisch et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
Selected geometric parameters (Å, °) calculated with X-RAY, AM1, PM3, HF and DFT

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808023416/hk2503sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023416/hk2503Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F.279 of the University Research Fund).

supplementary crystallographic information

Comment

The present work is part of a structural study of Schiff bases Özek et al., 2007; Odabaşoğlu, Büyükgüngör et al., 2007; Odabaşoğlu, Arslan et al., 2007). We report herein the crystal structure of the title compound, (I).

In general, O-hydroxy Schiff bases exhibit two possible tautomeric forms, the phenol-imine (or benzenoid) and keto-amine (or quinoid) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are possible: O-H···N in benzenoid and N-H···O in quinoid tautomers. The H atom in (I) is located on atom O1, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C2-O1, C8-N1, C1-C8 and C1-C2 bonds (Fig. 1 and Table 2). The O1-C2 bond has single-bond character, whereas the N1-C8 bond has a high degree of double-bond character as in 2-(3-methoxysalicylideneamino)-1H-benzimidazole- monohydrate, (II) [where the corresponding values are C-O = 1.357 (2) Å, C-N = 1.285 (2) Å, Albayrak et al., 2005]. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in (I) caused by the planarity of the molecule; the dihedral angle between rings A (C1-C6) and B (C9-C14) is 5.92 (7)°. The intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a nearly planar six-membered ring C (O1/H1/N1/C1/C2/C8), in which it is oriented with respect to rings A and B at dihedral angles of A/C = 1.55 (4)° and B/C = 5.95 (4)°. So, it is coplanar with the adjacent ring A. It generates an S(6) ring motif. The O1···N1 [2.621 (2) Å] distance is comparable to those observed for analogous ones in N-(2-hydroxyphenyl)salicylaldimine, (III) [2.675 (7) Å; Elerman et al., 1995] and in three(E)-2-[(bromophenyl)iminomethyl]-4-methoxyphenols, (IV) [2.603 (2), 2.638 (7) and 2.577 (4) Å;Özek et al., 2007].

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Ab-initio Hartree-Fock (HF), density-functional theory (DFT) and semi-empirical (AM1 and PM3) calculations and full-geometry optimizations were performed by means of GAUSSIAN 03 W package (Frisch et al., 2004). The selected bond lengths and angles together with the torsion angles are compared with the obtained ones from semi-empirical, ab-initio HF and DFT/B3LYP methods (Table 2). We observe an acceptable general agreement between them. Although the DFT molecular orbital theory was considered as the most accurate method for geometry optimization for free and complex ligands (Friesner, 2005; Liu et al., 2004), the HF method led to better results in regard to the bond lengths and angles.

Experimental

The title compound was prepared by refluxing a mixture of a solution containing 5-methoxysalicylaldehyde (0.5 g 3.3 mmol) in ethanol (20 ml) and a solution containing 4-chloraniline (0.420 g 3.3 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield; 76%, m.p. 378-379 K).

Refinement

H1 atom (for OH) was located in difference syntheses and refined isotropically [O-H = 0.88 (3) Å and Uiso(H) = 0.112 (9) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of (I) [symmetry codes: (i) 1 - x, y - 1/2, 3/2 - z; (ii) 1 - x, y + 1/2, 3/2 - z]. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C14H12ClNO2F000 = 544
Mr = 261.70Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10205 reflections
a = 21.2642 (19) Åθ = 1.7–27.2º
b = 4.7101 (3) ŵ = 0.31 mm1
c = 12.2175 (12) ÅT = 296 K
β = 93.361 (8)ºPrismatic long stick, red
V = 1221.56 (18) Å30.68 × 0.44 × 0.21 mm
Z = 4

Data collection

Stoe IPDSII diffractometer2364 independent reflections
Radiation source: fine-focus sealed tube1789 reflections with I > 2σ(I)
Monochromator: plane graphiteRint = 0.080
Detector resolution: 6.67 pixels mm-1θmax = 26.0º
T = 296 Kθmin = 1.9º
ω scansh = −26→26
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)k = −5→5
Tmin = 0.825, Tmax = 0.925l = −14→14
10205 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099  w = 1/[σ2(Fo2) + (0.0641P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2364 reflectionsΔρmax = 0.20 e Å3
167 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. 225 frames, detector distance = 120 mm
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.03208 (2)1.40379 (9)0.66121 (4)0.06631 (18)
O10.26185 (6)0.2746 (3)0.35438 (10)0.0677 (4)
H10.2404 (12)0.393 (5)0.394 (2)0.112 (9)*
O20.42346 (6)−0.2199 (3)0.66813 (10)0.0676 (4)
N10.21631 (6)0.5615 (3)0.51562 (10)0.0455 (3)
C10.29911 (7)0.2216 (3)0.54240 (12)0.0428 (3)
C20.30182 (7)0.1541 (3)0.43144 (12)0.0480 (4)
C30.34597 (8)−0.0395 (4)0.39932 (13)0.0575 (4)
H30.3478−0.08410.32540.069*
C40.38738 (8)−0.1674 (4)0.47512 (14)0.0551 (4)
H40.4170−0.29640.45210.066*
C50.38493 (7)−0.1042 (3)0.58541 (13)0.0493 (4)
C60.34078 (7)0.0873 (3)0.61831 (13)0.0484 (3)
H60.33870.12780.69250.058*
C70.47390 (9)−0.3918 (4)0.63688 (19)0.0753 (6)
H7A0.5012−0.28190.59360.090*
H7B0.4576−0.54990.59450.090*
H7C0.4971−0.46040.70130.090*
C80.25442 (7)0.4252 (3)0.58089 (12)0.0461 (3)
H80.25340.45790.65580.055*
C90.17376 (7)0.7637 (3)0.55533 (12)0.0436 (3)
C100.12943 (7)0.8772 (3)0.48017 (13)0.0522 (4)
H100.12910.81990.40730.063*
C110.08576 (8)1.0737 (3)0.51122 (14)0.0550 (4)
H110.05611.14740.45990.066*
C120.08649 (7)1.1592 (3)0.61875 (14)0.0496 (4)
C130.13070 (8)1.0524 (4)0.69489 (14)0.0557 (4)
H130.13121.11290.76740.067*
C140.17395 (7)0.8564 (3)0.66347 (13)0.0531 (4)
H140.20370.78480.71510.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0617 (3)0.0529 (2)0.0864 (3)0.01245 (18)0.0222 (2)0.0027 (2)
O10.0789 (8)0.0846 (9)0.0392 (6)0.0278 (7)−0.0008 (6)−0.0003 (6)
O20.0658 (7)0.0785 (8)0.0577 (7)0.0260 (6)−0.0028 (6)0.0012 (6)
N10.0478 (7)0.0442 (6)0.0448 (7)0.0018 (5)0.0049 (5)−0.0012 (5)
C10.0448 (7)0.0422 (7)0.0418 (8)−0.0002 (6)0.0068 (6)−0.0005 (6)
C20.0521 (8)0.0535 (9)0.0387 (8)0.0048 (6)0.0045 (7)0.0015 (6)
C30.0654 (10)0.0667 (10)0.0414 (8)0.0101 (8)0.0104 (7)−0.0051 (7)
C40.0548 (9)0.0571 (9)0.0545 (10)0.0100 (7)0.0114 (8)−0.0039 (7)
C50.0484 (8)0.0499 (8)0.0495 (8)0.0037 (6)0.0014 (7)0.0014 (7)
C60.0531 (8)0.0507 (8)0.0414 (8)0.0036 (7)0.0031 (7)−0.0039 (7)
C70.0683 (11)0.0716 (12)0.0849 (14)0.0251 (10)−0.0049 (10)0.0002 (10)
C80.0505 (8)0.0467 (8)0.0415 (8)0.0019 (6)0.0060 (7)−0.0027 (6)
C90.0439 (7)0.0406 (7)0.0468 (8)−0.0016 (6)0.0061 (6)−0.0005 (6)
C100.0572 (9)0.0534 (9)0.0458 (9)0.0035 (7)0.0021 (7)−0.0005 (7)
C110.0535 (9)0.0532 (9)0.0579 (10)0.0075 (7)−0.0002 (7)0.0058 (7)
C120.0464 (8)0.0404 (7)0.0632 (10)−0.0002 (6)0.0133 (7)0.0026 (7)
C130.0614 (9)0.0561 (9)0.0500 (9)0.0054 (7)0.0074 (8)−0.0058 (7)
C140.0548 (9)0.0558 (9)0.0482 (9)0.0106 (7)−0.0002 (7)−0.0019 (7)

Geometric parameters (Å, °)

O1—H10.88 (3)C7—H7C0.9600
C1—C61.396 (2)C8—N11.2763 (19)
C1—C21.397 (2)C8—H80.9300
C1—C81.448 (2)C9—C101.384 (2)
C2—O11.3554 (18)C9—C141.391 (2)
C2—C31.382 (2)C9—N11.4186 (19)
C3—C41.379 (2)C10—C111.380 (2)
C3—H30.9300C10—H100.9300
C4—C51.384 (2)C11—C121.373 (2)
C4—H40.9300C11—H110.9300
C5—O21.3756 (18)C12—C131.378 (2)
C5—C61.379 (2)C12—Cl11.7337 (15)
C6—H60.9300C13—C141.374 (2)
C7—O21.414 (2)C13—H130.9300
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600
C2—O1—H1102.0 (17)O2—C7—H7C109.5
C5—O2—C7117.19 (14)H7A—C7—H7C109.5
C8—N1—C9121.22 (13)H7B—C7—H7C109.5
C6—C1—C2118.74 (14)N1—C8—C1122.35 (14)
C6—C1—C8119.18 (13)N1—C8—H8118.8
C2—C1—C8122.08 (13)C1—C8—H8118.8
O1—C2—C3119.19 (14)C10—C9—C14118.22 (14)
O1—C2—C1121.27 (14)C10—C9—N1117.10 (13)
C3—C2—C1119.54 (14)C14—C9—N1124.68 (13)
C4—C3—C2121.03 (15)C11—C10—C9121.32 (15)
C4—C3—H3119.5C11—C10—H10119.3
C2—C3—H3119.5C9—C10—H10119.3
C3—C4—C5120.05 (15)C12—C11—C10119.31 (14)
C3—C4—H4120.0C12—C11—H11120.3
C5—C4—H4120.0C10—C11—H11120.3
O2—C5—C6115.56 (14)C11—C12—C13120.51 (15)
O2—C5—C4125.11 (15)C11—C12—Cl1120.72 (12)
C6—C5—C4119.33 (14)C13—C12—Cl1118.77 (13)
C5—C6—C1121.29 (14)C14—C13—C12119.87 (15)
C5—C6—H6119.4C14—C13—H13120.1
C1—C6—H6119.4C12—C13—H13120.1
O2—C7—H7A109.5C13—C14—C9120.76 (14)
O2—C7—H7B109.5C13—C14—H14119.6
H7A—C7—H7B109.5C9—C14—H14119.6
C6—C1—C2—O1178.95 (14)C14—C9—C10—C11−1.0 (2)
C8—C1—C2—O1−0.9 (2)N1—C9—C10—C11179.50 (14)
C6—C1—C2—C3−0.9 (2)C9—C10—C11—C120.3 (2)
C8—C1—C2—C3179.23 (14)C10—C11—C12—C130.6 (2)
O1—C2—C3—C4−179.82 (16)C10—C11—C12—Cl1−179.55 (12)
C1—C2—C3—C40.1 (3)C11—C12—C13—C14−0.8 (2)
C2—C3—C4—C50.4 (3)Cl1—C12—C13—C14179.40 (12)
C3—C4—C5—O2179.54 (16)C12—C13—C14—C90.0 (2)
C3—C4—C5—C60.0 (2)C10—C9—C14—C130.9 (2)
O2—C5—C6—C1179.51 (14)N1—C9—C14—C13−179.70 (14)
C4—C5—C6—C1−0.9 (2)C1—C8—N1—C9−178.85 (13)
C2—C1—C6—C51.4 (2)C10—C9—N1—C8−172.84 (13)
C8—C1—C6—C5−178.79 (14)C14—C9—N1—C87.7 (2)
C6—C1—C8—N1177.90 (14)C6—C5—O2—C7−172.96 (15)
C2—C1—C8—N1−2.3 (2)C4—C5—O2—C77.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (3)1.79 (3)2.6210 (18)157 (2)
C7—H7C···O2i0.962.563.495 (2)164

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Table 2 Selected geometric parameters (Å, °) calculated with X-RAY, AM1, PM3, HF and DFT

ParametersX-RAYAM1PM3HFaDFT/B3LYPa
C8 N11.276 (19)1.2921.3021.2621.293
C2 O11.355418)1.3681.3571.3361.344
C1 C61.396 (2)1.4061.4011.3931.406
C1 C81.448 (2)1.4661.4591.4671.449
C1 C21.397 (2)1.4081.4111.4021.423
N1 C91.418 (19)1.4091.4311.4081.406
C9 C101.384 (2)1.4141.4011.3911.403
C12 Cl11.734 (15)1.6991.6841.7431.758
C5 O21.3756 (18)1.3851.3861.3551.371
C11 C12 Cl1120.72 (12)119.860119.505119.595119.538
C6 C5 O2115.56 (14)114.847113.926116.374116.232
C6 C1 C8119.18 (13)116.153118.078118.004119.327
C9 N1 C8121.22 (13)121.780122.176120.342121.253
C14 C9 N1124.68 (13)123.445122.813122.881123.392
N1 C8 C1122.35 (14)123.800119.635123.408122.250
N1 C9 C10117.10 (13)117.991116.829118.015117.770
C8 C1 C2 O1-0.9 (2)-0.050-0.030-0.111-0.085
C6 C5 O2 C7-172.96 (15)179.476179.983179.698-179.874
C10 C9 N1 C8-172.84 (13)-149.450179.99962.793-147.450
N1 C8 C1 C6177.90 (14)-177.484-0.066-179.307-179.448
C1 C8 N1 C9-178.85 (13)-179.157179.991-178.540-177.303

Notes: (a) 6-31G(d,p).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2503).

References

  • Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O (2005). Acta Cryst. E61, o423–o424.
  • Elerman, Y., Elmali, A., Atakol, O. & Svoboda, I. (1995). Acta Cryst. C51, 2344–2346.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Friesner, R. A. (2005). Proc. Natl Acad. Sci. USA, 102, 6648–6653. [PubMed]
  • Frisch, M. J., et al. (2004). GAUSSIAN03 Gaussian Inc., Wallingford, CT 06492, USA.
  • Liu, H., Bandeira, N. A. G., Calhorda, M. J., Drew, M. G. B., Felix, V., Novosad, J., De Biani, F. F. & Zanello, P. (2004). J. Organomet. Chem.689, 2808–2819.
  • Odabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3654.
  • Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.
  • Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography