PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1429.
Published online 2008 July 9. doi:  10.1107/S1600536808020345
PMCID: PMC2962223

1-De­oxy-d-galactitol (l-fucitol)

Abstract

1-De­oxy-d-galactitol, C6H14O5, exists in the crystalline form as hydrogen-bonded layers of mol­ecules running parallel to the ac plane, with each mol­ecule acting as a donor and acceptor of five hydrogen bonds.

Related literature

For related literature, see: Yoshihara et al. (2008 [triangle]); Jones et al. (2007 [triangle]); Görbitz (1999 [triangle]); Izumori (2002 [triangle], 2006 [triangle]); Prince (1982 [triangle]); Watkin (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1429-scheme1.jpg

Experimental

Crystal data

  • C6H14O5
  • M r = 166.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1429-efi1.jpg
  • a = 4.8486 (3) Å
  • b = 4.8827 (3) Å
  • c = 16.8354 (13) Å
  • β = 92.856 (2)°
  • V = 398.07 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 150 K
  • 0.15 × 0.15 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.81, T max = 0.99
  • 2786 measured reflections
  • 998 independent reflections
  • 804 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.111
  • S = 0.88
  • 998 reflections
  • 100 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808020345/lh2653sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808020345/lh2653Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by the Programme for Promotion of Basic Research Activities for Innovative Bio­sciences (PROBRAIN).

supplementary crystallographic information

Comment

The methodology developed by Izumori (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008). This methodology could allow access to rare monosaccharides in water in large amounts. An example of this is the subsequent formation of 1-deoxy-D-galactitol 2 by hydrogenation of L-fucose 1 (Fig. 1) which subsequently could be oxidized enzymatically to 1-deoxy-D-tagatose (Jones et al., 2007) 3.

If the terminal hydroxyl group and H atoms are ignored there is a pseudo centre of symmetry between C2 and C3 (Fig. 2). The crystal structure exists of hydrogen-bonded layers of molecules running parallel to the c-axis (Fig. 3). Each molecule acts as a donor and acceptor of 5 hydrogen bonds, all intra-molecular hydrogen bonds have been omitted.

Experimental

The title compound was recrystallized from methanol: m.p. 420-422K; [α]D21 +1.6 (c, 1.13 in H2O) [Lit. (Yoshihara et al., 2008) for enantiomer [α]D20 -1.9 (c, 1.0 in H2O)].

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned fron the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22 reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Synthetic scheme.
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
The packing diagram for the title compound projected along the b-axis. Hydrogen bonds are shown as dotted lines.

Crystal data

C6H14O5F000 = 180
Mr = 166.17Dx = 1.386 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
a = 4.8486 (3) ÅCell parameters from 844 reflections
b = 4.8827 (3) Åθ = 5–27º
c = 16.8354 (13) ŵ = 0.12 mm1
β = 92.856 (2)ºT = 150 K
V = 398.07 (5) Å3Block, colourless
Z = 20.15 × 0.15 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer804 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 150 Kθmax = 27.4º
ω scansθmin = 5.4º
Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997)h = −6→6
Tmin = 0.81, Tmax = 0.99k = −5→6
2786 measured reflectionsl = −21→21
998 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.111  Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 17.0 25.0 12.0 3.16
S = 0.88(Δ/σ)max = 0.0002
998 reflectionsΔρmax = 0.34 e Å3
100 parametersΔρmin = −0.31 e Å3
1 restraintExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4779 (4)0.0226 (5)0.76245 (11)0.0217
C20.6328 (6)0.2631 (7)0.78168 (17)0.0186
C30.7866 (6)0.3389 (7)0.70769 (17)0.0189
O40.9430 (4)0.5805 (5)0.72728 (12)0.0227
C50.5946 (6)0.3936 (7)0.63490 (17)0.0207
O60.4117 (4)0.6179 (5)0.64879 (12)0.0238
C70.7550 (7)0.4471 (9)0.56067 (18)0.0330
C80.8283 (6)0.2108 (7)0.85426 (17)0.0190
O91.0094 (4)−0.0141 (5)0.84026 (12)0.0222
C100.6698 (6)0.1572 (7)0.92859 (17)0.0236
O110.8526 (4)0.1176 (5)0.99759 (12)0.0260
H210.50710.41000.79450.0249*
H310.90820.18750.69710.0263*
H510.47630.23070.62530.0282*
H710.62720.45100.51380.0515*
H720.89000.30470.55500.0518*
H730.84930.62230.56740.0506*
H810.94850.37090.86700.0243*
H1010.5642−0.01230.91930.0325*
H1020.54150.31070.93630.0333*
H11.07370.54380.69890.0372*
H30.9415−0.12960.80870.0364*
H40.51210.70600.67890.0402*
H90.32770.03970.78590.0353*
H100.90760.28130.99920.0410*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0179 (9)0.0228 (13)0.0249 (10)−0.0051 (9)0.0048 (8)−0.0061 (10)
C20.0180 (13)0.0189 (15)0.0189 (13)−0.0011 (11)0.0010 (10)0.0011 (12)
C30.0196 (13)0.0173 (15)0.0202 (13)−0.0016 (12)0.0031 (11)−0.0029 (12)
O40.0212 (10)0.0235 (13)0.0237 (9)−0.0059 (10)0.0057 (8)−0.0040 (10)
C50.0210 (14)0.0218 (17)0.0196 (13)0.0007 (13)0.0029 (11)−0.0017 (12)
O60.0188 (9)0.0271 (13)0.0254 (10)0.0014 (10)0.0003 (8)−0.0008 (11)
C70.0320 (17)0.048 (2)0.0192 (14)0.0027 (17)0.0047 (12)0.0033 (16)
C80.0166 (13)0.0198 (15)0.0204 (13)0.0021 (12)0.0006 (10)−0.0004 (12)
O90.0206 (10)0.0227 (12)0.0233 (10)0.0015 (10)0.0011 (8)−0.0047 (10)
C100.0223 (14)0.031 (2)0.0179 (13)0.0020 (13)0.0023 (11)−0.0001 (13)
O110.0323 (11)0.0248 (11)0.0206 (9)−0.0028 (11)−0.0024 (8)0.0022 (10)

Geometric parameters (Å, °)

O1—C21.423 (4)O6—H40.809
O1—H90.849C7—H710.979
C2—C31.529 (4)C7—H720.963
C2—C81.530 (4)C7—H730.974
C2—H210.972C8—O91.433 (4)
C3—O41.432 (4)C8—C101.523 (4)
C3—C51.525 (4)C8—H810.992
C3—H310.968O9—H30.832
O4—H10.832C10—O111.439 (4)
C5—O61.436 (4)C10—H1010.982
C5—C71.527 (4)C10—H1020.987
C5—H510.989O11—H100.843
C2—O1—H9105.6C5—C7—H71109.6
O1—C2—C3106.7 (2)C5—C7—H72109.6
O1—C2—C8110.0 (3)H71—C7—H72109.9
C3—C2—C8112.6 (2)C5—C7—H73108.1
O1—C2—H21109.2H71—C7—H73110.5
C3—C2—H21109.8H72—C7—H73109.1
C8—C2—H21108.5C2—C8—O9110.9 (2)
C2—C3—O4106.6 (2)C2—C8—C10111.5 (2)
C2—C3—C5113.2 (2)O9—C8—C10110.0 (3)
O4—C3—C5109.6 (3)C2—C8—H81112.0
C2—C3—H31106.9O9—C8—H81106.3
O4—C3—H31110.6C10—C8—H81105.8
C5—C3—H31109.8C8—O9—H3113.5
C3—O4—H195.8C8—C10—O11111.8 (2)
C3—C5—O6111.1 (2)C8—C10—H101107.1
C3—C5—C7111.9 (2)O11—C10—H101108.1
O6—C5—C7110.3 (3)C8—C10—H102108.9
C3—C5—H51108.5O11—C10—H102111.3
O6—C5—H51106.4H101—C10—H102109.5
C7—C5—H51108.6C10—O11—H1094.6
C5—O6—H498.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1···O6i0.831.912.691 (4)155
O9—H3···O4ii0.831.972.753 (4)156
O6—H4···O1iii0.812.102.758 (4)138
O6—H4···O40.812.292.842 (4)126
O1—H9···O9iv0.851.852.684 (4)166
O11—H10···O11v0.842.012.828 (4)163

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2653).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [PubMed]
  • Izumori, K. J. (2002). Naturwissenschaften, 89, 120–124. [PubMed]
  • Izumori, K. J. (2006). Biotechnology, 124, 717–722. [PubMed]
  • Jones, N. A., Jenkinson, S. F., Soengas, R., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. C63, o7–o10. [PubMed]
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  • Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography