PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1372.
Published online 2008 July 5. doi:  10.1107/S160053680801876X
PMCID: PMC2962220

(Z)-3-Chloro-3-phenyl-N-[(S)-1-phenyl­ethyl]prop-2-enamide

Abstract

The asymmetric unit of the title compound, C17H16ClNO, contains two crystallographically independent mol­ecules. These mol­ecules are connected in an alternating fashion through N—H(...)O and C—H(...)O hydrogen bonds, generating one-dimensional chains of graph sets R 2 1(6) and C(4) along the a axis.

Related literature

For related literature, see: Kishikawa et al., (1997 [triangle]); Cherry et al. (2003 [triangle]); Pontiki & Hadjipavlou (2007 [triangle]); Urdaneta et al. (2004 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1372-scheme1.jpg

Experimental

Crystal data

  • C17H16ClNO
  • M r = 285.76
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1372-efi1.jpg
  • a = 9.803 (3) Å
  • b = 14.976 (5) Å
  • c = 20.823 (6) Å
  • V = 3057.2 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 293 (2) K
  • 0.48 × 0.38 × 0.28 mm

Data collection

  • Rigaku AFC-7S Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.897, T max = 0.985 (expected range = 0.850–0.934)
  • 32660 measured reflections
  • 5802 independent reflections
  • 3687 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.161
  • S = 1.07
  • 5802 reflections
  • 362 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.28 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1693 Friedel pairs
  • Flack parameter: −0.03 (9)

Data collection: CrystalClear (Rigaku, 2002 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801876X/hb2746sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801876X/hb2746Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank FONACIT-MCT Venezuela for financial support (projects: LAB-199700821).

supplementary crystallographic information

Comment

The title compound, (I), represents a valuable intermediate for the synthesis of biologically active disubstituted pyrimidones (Cherry et al., 2003), phenyl-substituted amides with antioxidant and anti-inflamatory activity as novel lipoxygenase inhibitor (Pontiki & Hadjipavlou, 2007), and also as precursor for photochemical studies (Kishikawa et al., 1997).

The asymmetric unit of (I) contains two crystallographically indepedent molecules of the same stereochemical configuration (Fig. 1): C4 and C21 have S configuration. Each molecule displays two kinds of intramolecular C—H···Cl and C—H···N hydrogen bonds (Table 1). These interactions lead to the formation of five-membered rings described by graph-set symbol S(5) (Bernstein et al., 1995). In each molecule the phenyl groups are twisted with respect to the aliphatic chain defined by C4/N1/C3/O1/C2/C1 (CH1) and C21/N2/C18/C19/C20/O2 atoms (CH2), respectively. The dihedral angles between the C5—C10 and C12—C17 rings and the mean plane of the CH1 are 31.8 (2)° and 88.6 (2)°, for the molecule 1; C29—C34: 81.8 (2)° and C22—C2: 33.8 (2)° for the rings of the molecule 2. These molecules form a dimer linked through a N—H···O and C—H···O intermolecular hydrogen bonds in which the O atom from carbonyl group acts as a double aceptor of hydrogen bonds (Fig 1). This interaction produces a supramolecular motif described by the symbol R21(6). These dimers are connected in an alternate fashion via remaining N—H···O intermolecular hydrogen bonds, generating one-dimensional chains along the a axis (Fig. 2), this interaction is described by the symbol C(4). Adjacent chains are assembled through C—H···π interactions to afford a three-dimensional array.

Experimental

The title compound was prepared according to a reported procedure (Urdaneta et al., 2004), and colourless blocks of (I) were grown from a saturated AcOEt/Et2O (1:9) solution kept at 277 K.

Refinement

The N-bound H atoms were located in difference maps and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in idealised positions (C—H = 0.93-0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omited for clarity and dashed lines indicate the donor···acceptor interactions for the hydrogen bonds.
Fig. 2.
View of the one-dimensional ribbons along the a axis, generated by intermolecular hydrogen bonds. Intramolecular hydrogen bonds are also shown (dashed lines). Most H atoms have been omited for clarity

Crystal data

C17H16ClNOF000 = 1200
Mr = 285.76Dx = 1.242 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 16200 reflections
a = 9.803 (3) Åθ = 1.7–27.5º
b = 14.976 (5) ŵ = 0.25 mm1
c = 20.823 (6) ÅT = 293 (2) K
V = 3057.2 (15) Å3Block, colourless
Z = 80.48 × 0.38 × 0.28 mm

Data collection

Rigaku AFC-7S Mercury diffractometer5802 independent reflections
Radiation source: Normal-focus sealed tube3687 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.063
T = 293(2) Kθmax = 28.0º
ω scansθmin = 1.7º
Absorption correction: multi-scan(Jacobson, 1998)h = −8→11
Tmin = 0.897, Tmax = 0.985k = −17→17
32660 measured reflectionsl = −24→24

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0533P)2 + 1.3975P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.070(Δ/σ)max < 0.001
wR(F2) = 0.161Δρmax = 0.18 e Å3
S = 1.07Δρmin = −0.28 e Å3
5802 reflectionsExtinction correction: SHELXLTL-NT (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
362 parametersExtinction coefficient: 0.0040 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1693 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.03 (9)
Hydrogen site location: difmap and geom

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.22516 (10)0.07828 (9)0.67679 (6)0.0689 (4)
Cl20.67708 (13)−0.13296 (11)0.71017 (7)0.0894 (5)
O10.1409 (3)−0.0600 (2)0.58351 (14)0.0657 (9)
O20.6351 (3)−0.0446 (3)0.58420 (16)0.0829 (11)
N1−0.0829 (3)−0.0843 (2)0.56625 (16)0.0500 (9)
H1N−0.1799−0.07490.57180.075*
N20.4251 (4)−0.0362 (3)0.54294 (19)0.0606 (10)
H2N0.3285−0.04240.54360.091*
C10.0512 (4)0.0668 (3)0.68930 (19)0.0472 (10)
C2−0.0235 (4)0.0157 (3)0.6501 (2)0.0545 (12)
H2−0.11720.01860.65670.065*
C30.0199 (4)−0.0450 (3)0.5976 (2)0.0530 (11)
C4−0.0595 (4)−0.1488 (3)0.5152 (2)0.0505 (11)
H40.0189−0.18560.52750.061*
C5−0.0041 (4)0.1173 (3)0.7437 (2)0.0559 (12)
C6−0.1234 (5)0.0899 (3)0.7744 (2)0.0677 (13)
H6−0.16760.03820.76100.081*
C7−0.1763 (5)0.1392 (4)0.8244 (2)0.0772 (15)
H7−0.25600.12020.84450.093*
C8−0.1139 (5)0.2153 (4)0.8451 (2)0.0749 (15)
H8−0.15200.24890.87810.090*
C90.0041 (5)0.2415 (4)0.8171 (2)0.0771 (15)
H90.04880.29210.83220.092*
C100.0592 (5)0.1940 (4)0.7663 (3)0.0736 (15)
H100.13940.21370.74710.088*
C11−0.1834 (5)−0.2102 (3)0.5095 (3)0.0742 (15)
H11A−0.2015−0.23740.55030.111*
H11B−0.1652−0.25580.47820.111*
H11C−0.2613−0.17600.49630.111*
C12−0.0270 (4)−0.1055 (3)0.4513 (2)0.0498 (11)
C13−0.0587 (5)−0.0188 (3)0.4370 (2)0.0660 (13)
H13−0.10110.01650.46790.079*
C14−0.0291 (6)0.0174 (4)0.3779 (3)0.0816 (16)
H14−0.05220.07620.36880.098*
C150.0353 (6)−0.0344 (4)0.3321 (3)0.0823 (17)
H150.0554−0.01010.29210.099*
C160.0697 (5)−0.1213 (4)0.3450 (2)0.0748 (15)
H160.1129−0.15610.31410.090*
C170.0391 (4)−0.1558 (3)0.4044 (2)0.0598 (13)
H170.0633−0.21450.41350.072*
C180.5007 (4)−0.1343 (3)0.6992 (2)0.0566 (12)
C190.4457 (4)−0.0998 (3)0.6462 (2)0.0562 (12)
H190.3510−0.10240.64440.067*
C200.5118 (4)−0.0577 (3)0.5898 (2)0.0564 (12)
C210.4705 (5)−0.0075 (4)0.4790 (2)0.0692 (14)
H210.5526−0.04160.46820.083*
C220.4252 (5)−0.1776 (3)0.7526 (2)0.0643 (13)
C230.2911 (5)−0.1517 (4)0.7646 (2)0.0753 (15)
H230.2495−0.10810.73950.090*
C240.2199 (7)−0.1923 (5)0.8150 (3)0.104 (2)
H240.1321−0.17330.82500.125*
C250.2783 (10)−0.2597 (6)0.8497 (3)0.118 (3)
H250.2282−0.28790.88170.141*
C260.4087 (9)−0.2858 (5)0.8380 (3)0.110 (2)
H260.4480−0.33140.86200.132*
C270.4825 (6)−0.2440 (4)0.7900 (3)0.0804 (16)
H270.5725−0.26080.78270.096*
C280.3596 (6)−0.0315 (4)0.4295 (2)0.0913 (18)
H28A0.3381−0.09380.43280.137*
H28B0.3924−0.01880.38700.137*
H28C0.27920.00320.43770.137*
C290.5052 (5)0.0901 (4)0.4736 (2)0.0669 (14)
C300.4374 (6)0.1545 (4)0.5075 (3)0.0836 (16)
H300.37100.13740.53700.100*
C310.4653 (8)0.2447 (5)0.4992 (4)0.107 (2)
H310.41840.28730.52310.128*
C320.5621 (9)0.2707 (5)0.4559 (4)0.113 (2)
H320.58110.33100.45020.136*
C330.6305 (7)0.2085 (6)0.4209 (4)0.118 (3)
H330.69560.22670.39120.142*
C340.6043 (6)0.1177 (5)0.4292 (3)0.0914 (19)
H340.65230.07570.40530.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0419 (6)0.0814 (9)0.0833 (9)−0.0033 (6)0.0006 (5)−0.0198 (7)
Cl20.0494 (7)0.1156 (12)0.1032 (11)0.0039 (7)−0.0093 (7)0.0216 (9)
O10.0387 (17)0.089 (3)0.069 (2)0.0026 (16)0.0028 (14)−0.0176 (18)
O20.0356 (18)0.127 (3)0.086 (2)0.0029 (17)0.0049 (16)0.012 (2)
N10.0369 (18)0.063 (2)0.050 (2)−0.0017 (17)−0.0002 (15)−0.0064 (19)
N20.0381 (19)0.074 (3)0.070 (3)−0.0029 (18)−0.0024 (18)0.005 (2)
C10.035 (2)0.058 (3)0.049 (3)−0.003 (2)−0.0022 (18)0.002 (2)
C20.042 (2)0.063 (3)0.059 (3)0.002 (2)0.006 (2)0.005 (2)
C30.051 (3)0.059 (3)0.049 (3)0.002 (2)0.003 (2)−0.002 (2)
C40.050 (2)0.053 (3)0.049 (3)0.003 (2)−0.007 (2)0.003 (2)
C50.050 (2)0.072 (3)0.046 (3)0.002 (2)0.001 (2)−0.004 (2)
C60.067 (3)0.074 (4)0.062 (3)−0.011 (3)0.017 (2)−0.013 (3)
C70.068 (3)0.099 (4)0.065 (3)−0.007 (3)0.022 (3)−0.015 (3)
C80.071 (3)0.092 (4)0.061 (3)0.006 (3)0.010 (3)−0.023 (3)
C90.077 (3)0.081 (4)0.073 (4)−0.010 (3)0.013 (3)−0.025 (3)
C100.059 (3)0.085 (4)0.077 (4)−0.010 (3)0.002 (3)−0.019 (3)
C110.080 (3)0.068 (4)0.075 (3)−0.023 (3)−0.010 (3)−0.003 (3)
C120.048 (2)0.060 (3)0.042 (3)−0.004 (2)−0.0019 (18)−0.002 (2)
C130.086 (4)0.056 (3)0.056 (3)0.004 (3)0.003 (3)0.006 (3)
C140.110 (5)0.059 (4)0.076 (4)0.000 (3)0.005 (3)0.018 (3)
C150.103 (4)0.086 (5)0.058 (3)−0.022 (3)0.011 (3)0.007 (3)
C160.085 (4)0.087 (4)0.053 (3)−0.004 (3)0.010 (3)−0.009 (3)
C170.057 (3)0.067 (3)0.055 (3)0.001 (2)−0.001 (2)−0.009 (3)
C180.042 (2)0.062 (3)0.066 (3)0.004 (2)0.000 (2)−0.011 (3)
C190.039 (2)0.068 (3)0.061 (3)−0.001 (2)0.004 (2)−0.002 (3)
C200.037 (2)0.063 (3)0.069 (3)0.004 (2)0.003 (2)−0.005 (2)
C210.057 (3)0.083 (4)0.067 (3)0.006 (3)0.007 (2)0.004 (3)
C220.065 (3)0.067 (3)0.060 (3)−0.007 (3)−0.001 (3)−0.017 (3)
C230.069 (3)0.083 (4)0.073 (3)−0.011 (3)0.010 (3)−0.008 (3)
C240.089 (4)0.123 (6)0.100 (5)−0.024 (4)0.035 (4)−0.025 (5)
C250.155 (8)0.132 (7)0.066 (4)−0.041 (6)0.025 (5)−0.001 (4)
C260.150 (7)0.110 (6)0.070 (4)−0.006 (5)0.011 (5)0.012 (4)
C270.093 (4)0.091 (4)0.058 (3)0.001 (3)−0.006 (3)0.005 (3)
C280.101 (4)0.100 (5)0.073 (4)−0.022 (3)−0.018 (3)0.002 (3)
C290.050 (3)0.088 (4)0.062 (3)−0.002 (3)−0.005 (2)0.009 (3)
C300.083 (4)0.084 (5)0.084 (4)−0.003 (3)0.006 (3)0.007 (3)
C310.137 (6)0.075 (5)0.108 (5)−0.003 (4)0.003 (5)0.011 (4)
C320.127 (6)0.088 (6)0.124 (7)−0.021 (5)−0.027 (5)0.024 (5)
C330.098 (5)0.124 (7)0.133 (7)−0.027 (5)−0.004 (5)0.062 (6)
C340.071 (4)0.108 (5)0.096 (5)−0.003 (3)0.012 (3)0.019 (4)

Geometric parameters (Å, °)

Cl1—C11.734 (4)C15—C161.370 (7)
Cl2—C181.745 (4)C15—H150.9300
O1—C31.242 (5)C16—C171.374 (7)
O2—C201.231 (5)C16—H160.9300
N1—C31.338 (5)C17—H170.9300
N1—C41.455 (5)C18—C191.332 (6)
N1—H1N0.9677C18—C221.484 (7)
N2—C201.333 (6)C19—C201.483 (6)
N2—C211.469 (6)C19—H190.9300
N2—H2N0.9518C21—C291.504 (8)
C1—C21.338 (6)C21—C281.541 (7)
C1—C51.467 (6)C21—H210.9800
C2—C31.483 (6)C22—C271.382 (7)
C2—H20.9300C22—C231.394 (7)
C4—C121.513 (6)C23—C241.399 (8)
C4—C111.528 (6)C23—H230.9300
C4—H40.9800C24—C251.367 (10)
C5—C101.387 (7)C24—H240.9300
C5—C61.394 (6)C25—C261.359 (9)
C6—C71.378 (6)C25—H250.9300
C6—H60.9300C26—C271.385 (8)
C7—C81.363 (7)C26—H260.9300
C7—H70.9300C27—H270.9300
C8—C91.353 (7)C28—H28A0.9600
C8—H80.9300C28—H28B0.9600
C9—C101.385 (7)C28—H28C0.9600
C9—H90.9300C29—C301.368 (7)
C10—H100.9300C29—C341.404 (7)
C11—H11A0.9600C30—C311.390 (8)
C11—H11B0.9600C30—H300.9300
C11—H11C0.9600C31—C321.366 (10)
C12—C131.369 (6)C31—H310.9300
C12—C171.394 (6)C32—C331.359 (10)
C13—C141.376 (7)C32—H320.9300
C13—H130.9300C33—C341.394 (9)
C14—C151.382 (7)C33—H330.9300
C14—H140.9300C34—H340.9300
C3—N1—C4122.0 (3)C16—C17—C12121.9 (5)
C3—N1—H1N128.2C16—C17—H17119.0
C4—N1—H1N109.8C12—C17—H17119.0
C20—N2—C21122.8 (4)C19—C18—C22126.0 (4)
C20—N2—H2N126.9C19—C18—Cl2120.3 (4)
C21—N2—H2N110.1C22—C18—Cl2113.7 (4)
C2—C1—C5124.4 (4)C18—C19—C20130.1 (4)
C2—C1—Cl1120.2 (3)C18—C19—H19114.9
C5—C1—Cl1115.4 (3)C20—C19—H19114.9
C1—C2—C3130.1 (4)O2—C20—N2121.2 (4)
C1—C2—H2115.0O2—C20—C19124.9 (4)
C3—C2—H2115.0N2—C20—C19113.9 (4)
O1—C3—N1121.6 (4)N2—C21—C29114.9 (4)
O1—C3—C2124.0 (4)N2—C21—C28108.9 (4)
N1—C3—C2114.4 (4)C29—C21—C28109.6 (4)
N1—C4—C12113.0 (3)N2—C21—H21107.7
N1—C4—C11109.3 (4)C29—C21—H21107.7
C12—C4—C11110.9 (3)C28—C21—H21107.7
N1—C4—H4107.8C27—C22—C23118.9 (5)
C12—C4—H4107.8C27—C22—C18122.2 (5)
C11—C4—H4107.8C23—C22—C18118.9 (5)
C10—C5—C6117.7 (4)C22—C23—C24118.9 (6)
C10—C5—C1121.5 (4)C22—C23—H23120.5
C6—C5—C1120.8 (4)C24—C23—H23120.5
C7—C6—C5120.3 (5)C25—C24—C23120.6 (6)
C7—C6—H6119.9C25—C24—H24119.7
C5—C6—H6119.9C23—C24—H24119.7
C8—C7—C6121.2 (5)C26—C25—C24120.8 (7)
C8—C7—H7119.4C26—C25—H25119.6
C6—C7—H7119.4C24—C25—H25119.6
C9—C8—C7119.4 (5)C25—C26—C27119.4 (7)
C9—C8—H8120.3C25—C26—H26120.3
C7—C8—H8120.3C27—C26—H26120.3
C8—C9—C10120.9 (5)C22—C27—C26121.3 (6)
C8—C9—H9119.6C22—C27—H27119.3
C10—C9—H9119.6C26—C27—H27119.3
C9—C10—C5120.6 (5)C21—C28—H28A109.5
C9—C10—H10119.7C21—C28—H28B109.5
C5—C10—H10119.7H28A—C28—H28B109.5
C4—C11—H11A109.5C21—C28—H28C109.5
C4—C11—H11B109.5H28A—C28—H28C109.5
H11A—C11—H11B109.5H28B—C28—H28C109.5
C4—C11—H11C109.5C30—C29—C34117.9 (6)
H11A—C11—H11C109.5C30—C29—C21122.4 (5)
H11B—C11—H11C109.5C34—C29—C21119.5 (5)
C13—C12—C17117.8 (4)C29—C30—C31121.7 (6)
C13—C12—C4123.4 (4)C29—C30—H30119.1
C17—C12—C4118.8 (4)C31—C30—H30119.1
C12—C13—C14121.3 (5)C32—C31—C30119.7 (7)
C12—C13—H13119.3C32—C31—H31120.2
C14—C13—H13119.3C30—C31—H31120.2
C13—C14—C15119.6 (5)C33—C32—C31120.1 (7)
C13—C14—H14120.2C33—C32—H32119.9
C15—C14—H14120.2C31—C32—H32119.9
C16—C15—C14120.6 (5)C32—C33—C34120.8 (7)
C16—C15—H15119.7C32—C33—H33119.6
C14—C15—H15119.7C34—C33—H33119.6
C15—C16—C17118.7 (5)C33—C34—C29119.8 (7)
C15—C16—H16120.6C33—C34—H34120.1
C17—C16—H16120.6C29—C34—H34120.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.971.892.852 (4)174
N2—H2N···O10.952.042.933 (5)157
C10—H10···Cl10.932.643.021 (6)105
C13—H13···N10.932.552.874 (5)101
C19—H19···O10.932.503.315 (5)146
C27—H27···Cl20.932.653.028 (6)105
C30—H30···N20.932.652.951 (5)99

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2746).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cherry, K., Abarbri, M., Parían, J.-L. & Duchene, A. (2003). Tetrahedron Lett.44, 5791–5794.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Kishikawa, K., Satoshi, A., Shigeo, K., Makoto, Y. & Kazutoshi, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 77–84.
  • Pontiki, E. & Hadjipavlou, L. (2007). Med. Chem.3, 175–186. [PubMed]
  • Rigaku (2002). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Urdaneta, N. A., Salazar, J., Herrera, J. & López, S. (2004). Synth. Commun.34, 657–664.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography