PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1605.
Published online 2008 July 26. doi:  10.1107/S160053680802309X
PMCID: PMC2962217

N-(2,6-Dimethyl­phen­yl)-2-methyl­benzamide

Abstract

In the title mol­ecule, C16H17NO, the N—H and C=O groups are in the anti­periplanar conformation that has been observed in related compounds. Furthermore, the conformation of the C=O group with respect to the methyl substituent in the 2-methyl­phenyl ring is syn, as has also been observed in related structures. The amide group makes dihedral angles of 50.3 (3) and 64.6 (3)° with the 2-methyl­phenyl and 2,6-dimethyl­phenyl rings, respectively, while the angle between the planes of the two rings is 14.26 (7)°. The mol­ecules are packed into chains via N—H(...)O hydrogen bonds. An intramolecular C—H(...)O hydrogen bond is also observed.

Related literature

For related literature, see: Gowda et al. (2003 [triangle]); Gowda, Foro et al. (2008 [triangle]); Gowda, Tokarčík et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1605-scheme1.jpg

Experimental

Crystal data

  • C16H17NO
  • M r = 239.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1605-efi1.jpg
  • a = 11.687 (1) Å
  • b = 10.0187 (8) Å
  • c = 22.108 (2) Å
  • V = 2588.6 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 (2) K
  • 0.36 × 0.24 × 0.04 mm

Data collection

  • Oxford Xcalibur diffractometer with Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.971, T max = 0.999
  • 10773 measured reflections
  • 2624 independent reflections
  • 1864 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.127
  • S = 1.00
  • 2624 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and JANA2000 (Petříček et al., 2000 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXS97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802309X/fb2099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802309X/fb2099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-methyl-N-(2,6-dimethylphenyl)-benzamide (N26DMP2MBA) has been determined in order to explore the effect of the substituents on the structures of benzanilides (Gowda et al., 2003; Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008). In the structure of the title compound (N26DMP2MBA) (Fig. 1), the N—H and C═O groups are in antiperiplanar conformation. This conformation is similar to the conformations in the already determined structures, e.g. in 2-methyl-N-(phenyl)-benzamide (NP2MBA) (Gowda, Foro et al., 2008); in 2-methyl-N-(2-methylphenyl)-benzamide (N2MP2MBA) and in N-(2,6-dimethylphenyl)-benzamide (N26DMPBA) (Gowda, Tokarčík et al., 2008). Further, in the title compound N26DMP2MBA, the conformation of the C═O group to the methyl substituent in the 2-methylphenyl ring is syn. This conformation is similar to those observed in NP2MBA and N2MP2MBA. The bond distances and angles in N26DMP2MBA are similar to those in NP2MBA, N2MP2MBA, N26DMPBA and other benzanilides (Gowda et al., 2003; Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008). The amide group makes the dihedral angles equal to 50.3 (3)° and 64.6 (3)° with the 2-methylphenyl and 2,6-dimethylphenyl rings, respectively, while the angle between the planes of both rings is 14.26 (7)°. In the crystal structure, the molecules are linked into chains via intermolecular N—H···O hydrogen bonds (Table 1). These chains are parallel to the a axis (Fig. 2).

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point (136°C). The title compound was also characterized by recording its infrared and NMR spectra. Plate-like colourless layered crystals with edges in the range from 0.2 to 1.0 mm were obtained by slow evaporation at room temperature from an ethanol solution (0.5 g of the title compound in about 40 ml of ethanol).

Refinement

All the hydrogen atoms could have been discerned in the difference Fourier map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation with Caryl—H = 0.95, Cmethyl—H = 0.98 Å, while UisoH = 1.2UeqC. The positional parameters of HN were refined freely. UisoHN = 1.2UeqN. Five not matching reflections (2 0 0; 2 1 1; 1 0 2; 1 1 2; 1 1 3) were omitted from the refinement since their |Fo-Fc)|/σ(Fo)>100 (Petříček et al., 2000).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C16H17NODx = 1.228 Mg m3
Mr = 239.31Melting point: 409 K
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4403 reflections
a = 11.687 (1) Åθ = 2.2–28.0º
b = 10.0187 (8) ŵ = 0.08 mm1
c = 22.108 (2) ÅT = 100 (2) K
V = 2588.6 (4) Å3Plate, colourless
Z = 80.36 × 0.24 × 0.04 mm
F000 = 1024

Data collection

Oxford Xcalibur diffractometer with Sapphire CCD detector2624 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 100(2) Kθmax = 26.4º
Rotation method data acquisition using ω and [var phi] scansθmin = 2.8º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −14→14
Tmin = 0.971, Tmax = 0.999k = −11→12
10773 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0871P)2 + 0.016P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2624 reflectionsΔρmax = 0.27 e Å3
169 parametersΔρmin = −0.21 e Å3
62 constraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.66409 (12)0.10525 (13)0.52066 (6)0.0192 (3)
C20.71926 (13)0.06605 (13)0.46747 (6)0.0220 (3)
C30.66617 (14)0.09420 (15)0.41272 (7)0.0286 (4)
H30.70310.07070.37600.034*
C40.56017 (15)0.15594 (14)0.41088 (7)0.0311 (4)
H40.52530.17530.37310.037*
C50.50550 (13)0.18914 (14)0.46372 (7)0.0275 (4)
H50.43190.22910.46200.033*
C60.55589 (12)0.16532 (13)0.52008 (6)0.0214 (3)
C70.76049 (11)0.17701 (13)0.61334 (6)0.0188 (3)
C80.83330 (12)0.13044 (13)0.66513 (6)0.0204 (3)
C90.81566 (13)0.17869 (13)0.72420 (7)0.0238 (3)
C100.88936 (13)0.13316 (14)0.76907 (7)0.0302 (4)
H100.87750.16220.80950.036*
C110.97939 (14)0.04706 (16)0.75717 (7)0.0318 (4)
H111.02850.01880.78890.038*
C120.99719 (13)0.00269 (15)0.69892 (8)0.0298 (4)
H121.0596−0.05490.69010.036*
C130.92333 (13)0.04273 (14)0.65328 (7)0.0244 (3)
H130.93420.01000.61340.029*
C140.83131 (13)−0.00795 (15)0.46972 (7)0.0277 (4)
H14A0.8217−0.09040.49300.033*
H14B0.88930.04820.48910.033*
H14C0.8558−0.02980.42850.033*
C150.49430 (12)0.20052 (15)0.57709 (7)0.0270 (4)
H15A0.52740.28200.59430.032*
H15B0.50190.12730.60620.032*
H15C0.41310.21540.56820.032*
C160.72240 (14)0.27522 (16)0.73949 (7)0.0319 (4)
H16A0.65420.25450.71550.038*
H16B0.74790.36620.73040.038*
H16C0.70400.26820.78260.038*
O10.74295 (8)0.29638 (10)0.60380 (4)0.0221 (3)
N10.71980 (10)0.07909 (12)0.57731 (5)0.0198 (3)
H1N0.7370 (13)−0.0079 (17)0.5864 (7)0.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0241 (7)0.0121 (7)0.0214 (7)−0.0040 (6)−0.0027 (6)0.0008 (5)
C20.0294 (8)0.0141 (7)0.0226 (8)−0.0037 (6)−0.0004 (6)0.0003 (5)
C30.0437 (10)0.0198 (8)0.0223 (7)−0.0024 (7)−0.0011 (7)−0.0009 (6)
C40.0469 (10)0.0206 (8)0.0259 (8)−0.0016 (8)−0.0131 (7)0.0003 (6)
C50.0293 (8)0.0167 (7)0.0364 (9)0.0004 (7)−0.0101 (7)−0.0005 (6)
C60.0247 (7)0.0128 (7)0.0266 (8)−0.0047 (6)−0.0035 (6)0.0012 (6)
C70.0199 (7)0.0159 (8)0.0208 (7)−0.0020 (6)0.0058 (6)0.0001 (6)
C80.0243 (7)0.0141 (7)0.0228 (8)−0.0052 (6)−0.0003 (6)0.0029 (5)
C90.0284 (7)0.0180 (7)0.0251 (8)−0.0050 (6)−0.0010 (6)−0.0009 (6)
C100.0403 (9)0.0270 (8)0.0235 (8)−0.0038 (7)−0.0063 (7)−0.0011 (6)
C110.0337 (8)0.0290 (8)0.0326 (9)−0.0019 (7)−0.0136 (7)0.0053 (7)
C120.0266 (8)0.0256 (8)0.0372 (10)0.0017 (7)−0.0050 (7)0.0027 (7)
C130.0280 (8)0.0184 (7)0.0267 (8)−0.0009 (7)−0.0011 (6)0.0009 (6)
C140.0339 (8)0.0245 (8)0.0246 (8)0.0035 (7)0.0050 (7)−0.0006 (6)
C150.0242 (7)0.0223 (8)0.0346 (9)0.0002 (7)0.0030 (7)0.0012 (6)
C160.0402 (9)0.0327 (9)0.0227 (8)−0.0003 (8)−0.0003 (7)−0.0037 (7)
O10.0275 (6)0.0139 (5)0.0250 (6)−0.0004 (4)0.0020 (4)0.0014 (4)
N10.0260 (6)0.0142 (6)0.0193 (6)0.0019 (5)−0.0025 (5)0.0018 (5)

Geometric parameters (Å, °)

C1—C21.397 (2)C9—C161.496 (2)
C1—C61.400 (2)C10—C111.386 (2)
C1—N11.4357 (17)C10—H100.9500
C2—C31.389 (2)C11—C121.378 (2)
C2—C141.506 (2)C11—H110.9500
C3—C41.385 (2)C12—C131.387 (2)
C3—H30.9500C12—H120.9500
C4—C51.372 (2)C13—H130.9500
C4—H40.9500C14—H14A0.9800
C5—C61.399 (2)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—C151.494 (2)C15—H15A0.9800
C7—O11.2316 (17)C15—H15B0.9800
C7—N11.3502 (18)C15—H15C0.9800
C7—C81.5009 (19)C16—H16A0.9800
C8—C131.396 (2)C16—H16B0.9800
C8—C91.408 (2)C16—H16C0.9800
C9—C101.391 (2)N1—H1N0.917 (17)
C2—C1—C6121.98 (13)C12—C11—C10119.52 (14)
C2—C1—N1118.27 (12)C12—C11—H11120.2
C6—C1—N1119.73 (12)C10—C11—H11120.2
C3—C2—C1118.04 (13)C11—C12—C13119.50 (15)
C3—C2—C14121.15 (13)C11—C12—H12120.2
C1—C2—C14120.78 (12)C13—C12—H12120.2
C4—C3—C2121.05 (14)C12—C13—C8120.98 (14)
C4—C3—H3119.5C12—C13—H13119.5
C2—C3—H3119.5C8—C13—H13119.5
C5—C4—C3119.97 (14)C2—C14—H14A109.5
C5—C4—H4120.0C2—C14—H14B109.5
C3—C4—H4120.0H14A—C14—H14B109.5
C4—C5—C6121.39 (14)C2—C14—H14C109.5
C4—C5—H5119.3H14A—C14—H14C109.5
C6—C5—H5119.3H14B—C14—H14C109.5
C5—C6—C1117.49 (13)C6—C15—H15A109.5
C5—C6—C15120.57 (13)C6—C15—H15B109.5
C1—C6—C15121.93 (12)H15A—C15—H15B109.5
O1—C7—N1123.09 (13)C6—C15—H15C109.5
O1—C7—C8121.79 (12)H15A—C15—H15C109.5
N1—C7—C8115.08 (12)H15B—C15—H15C109.5
C13—C8—C9120.04 (13)C9—C16—H16A109.5
C13—C8—C7118.69 (12)C9—C16—H16B109.5
C9—C8—C7121.19 (12)H16A—C16—H16B109.5
C10—C9—C8117.28 (14)C9—C16—H16C109.5
C10—C9—C16120.15 (13)H16A—C16—H16C109.5
C8—C9—C16122.57 (13)H16B—C16—H16C109.5
C11—C10—C9122.62 (14)C7—N1—C1122.80 (12)
C11—C10—H10118.7C7—N1—H1N118.9 (10)
C9—C10—H10118.7C1—N1—H1N117.7 (10)
C6—C1—C2—C33.1 (2)N1—C7—C8—C9−132.73 (14)
N1—C1—C2—C3−178.62 (12)C13—C8—C9—C10−1.3 (2)
C6—C1—C2—C14−175.18 (12)C7—C8—C9—C10−178.09 (12)
N1—C1—C2—C143.1 (2)C13—C8—C9—C16178.58 (14)
C1—C2—C3—C4−1.8 (2)C7—C8—C9—C161.8 (2)
C14—C2—C3—C4176.51 (13)C8—C9—C10—C112.0 (2)
C2—C3—C4—C5−0.6 (2)C16—C9—C10—C11−177.92 (14)
C3—C4—C5—C61.8 (2)C9—C10—C11—C12−0.7 (2)
C4—C5—C6—C1−0.5 (2)C10—C11—C12—C13−1.3 (2)
C4—C5—C6—C15−179.17 (13)C11—C12—C13—C81.9 (2)
C2—C1—C6—C5−2.0 (2)C9—C8—C13—C12−0.6 (2)
N1—C1—C6—C5179.75 (12)C7—C8—C13—C12176.27 (13)
C2—C1—C6—C15176.66 (13)O1—C7—N1—C17.7 (2)
N1—C1—C6—C15−1.6 (2)C8—C7—N1—C1−169.99 (11)
O1—C7—C8—C13−127.30 (14)C2—C1—N1—C7112.35 (15)
N1—C7—C8—C1350.44 (17)C6—C1—N1—C7−69.34 (18)
O1—C7—C8—C949.54 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.917 (17)2.012 (17)2.9248 (15)173.7 (14)
C15—H15A···O10.982.533.1170 (17)118

Symmetry codes: (i) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2099).

References

  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o383. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299. [PMC free article] [PubMed]
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd., Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd., Köln, Germany.
  • Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000 Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography