PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1594–o1595.
Published online 2008 July 26. doi:  10.1107/S1600536808022861
PMCID: PMC2962208

4-Chloro-N′-[(Z)-4-(dimethyl­amino)benzyl­idene]benzohydrazide mono­hydrate

Abstract

In the title compound, C16H16ClN3O·H2O, the dihedral angle between the two aromatic rings is 44.58 (11)°. The N atom of the dimethyl­amino group adopts a pyramidal configuration. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the (001) plane by inter­molecular N—H(...)O, O—H(...)N and O—H(...)O hydrogen bonds involving the water mol­ecule and C—H(...)Cl hydrogen bonds. In addition, C—H(...)π inter­actions are observed.

Related literature

For the biological activities of hydrazones, see: Bedia et al. (2006 [triangle]); Rollas et al. (2002 [triangle]); Terzioglu & Gürsoy (2003 [triangle]); Duraisamy et al. (2008 [triangle]); Singh et al. (1992 [triangle]); Ergenç & Günay, (1998 [triangle]); Durgun et al. (1993 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1594-scheme1.jpg

Experimental

Crystal data

  • C16H16ClN3O·H2O
  • M r = 319.78
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1594-efi1.jpg
  • a = 6.4418 (1) Å
  • b = 6.9344 (1) Å
  • c = 33.8083 (7) Å
  • V = 1510.22 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 100.0 (1) K
  • 0.32 × 0.16 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.921, T max = 0.981
  • 12336 measured reflections
  • 4311 independent reflections
  • 3301 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.114
  • S = 1.01
  • 4311 reflections
  • 205 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1724 Friedel pairs
  • Flack parameter: −0.14 (7)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022861/ci2637sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022861/ci2637Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Hydrazone compounds have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). They are used as chromogenic receptors to show colorimetric responses and UV-Vis spectral changes in the presence of fluoride ions in organic solvents (Duraisamy et al., 2008). Hydrazide-hydrazone compounds are not only intermediates but they are also very effective organic compounds in their own right. When they are used as intermediates, coupling products can be synthesized by using the active hydrogen component of CONHNCH azometine group (Singh et al., 1992). N-Alkyl hydrazides can be synthesized by reduction of hydrazones with NaBH4 (Ergenç & Günay, 1998) and substituted 1,3,4-oxadiazolines can be synthesized when hydrazones are heated in the presence of acetic anhydride (Durgun et al., 1993). Prompted by these reviews, the title compound was synthesized and its crystal structure reported.

The bond lengths and angles in the title molecule (Fig. 1) are found to have normal values (Allen et al., 1987). The dihedral angle between the two benzene rings (C1–C6 and C9–C14) is 44.58 (11)° indicating that the molecule is non-planar. Atom N3 adopts a pyramidal configuration.

The crystal packing (Fig. 2) shows that the molecules are linked into two-dimensional networks parallel to the (001) plane by intermolecular O—H···N, O—H···O and C—H···Cl hydrogen bonds. In addition, the packing is stabilized by C—H···π interactions.

Experimental

The title compound was prepared by Schiff base condensation of 4-chlorophenyl hydrazide (0.01 mol) and 4-(dimethylamino)benzaldehyde (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated H2SO4. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with water and dried. Single crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 64%). Analysis % for C16H16N3OCl found (calculated): C 63.62 (63.68), H 5.37 (5.3), N 13.88 (13.93).

Refinement

The imino H atom was located in a difference map and refined with a N-H distance restraint of 0.85 (1) Å. The water H atoms were also located in a difference map and allowed to ride on the O atom, with Uiso = 1.5Ueq(O). The remaining H atoms were positioned geometrically [C-H = 0.93-0.96 %A] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis.

Crystal data

C16H16ClN3O·H2OF000 = 672
Mr = 319.78Dx = 1.406 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1906 reflections
a = 6.4418 (1) Åθ = 2.4–23.3º
b = 6.9344 (1) ŵ = 0.26 mm1
c = 33.8083 (7) ÅT = 100.0 (1) K
V = 1510.22 (4) Å3Needle, colourless
Z = 40.32 × 0.16 × 0.07 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4311 independent reflections
Radiation source: fine-focus sealed tube3301 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.056
T = 100.0(1) Kθmax = 30.1º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −9→9
Tmin = 0.921, Tmax = 0.981k = −9→6
12336 measured reflectionsl = −47→37

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050  w = 1/[σ2(Fo2) + (0.0492P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.34 e Å3
4311 reflectionsΔρmin = −0.34 e Å3
205 parametersExtinction correction: none
2 restraintsAbsolute structure: Flack (1983), 1724 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.14 (7)
Secondary atom site location: difference Fourier map

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.39865 (9)0.50981 (9)0.568340 (15)0.02126 (14)
O1−0.3268 (2)0.4990 (2)0.42597 (4)0.0206 (3)
N1−0.0370 (3)0.4579 (3)0.38853 (5)0.0146 (4)
N2−0.1527 (3)0.4602 (3)0.35420 (5)0.0151 (4)
N3−0.4409 (3)0.4624 (3)0.17091 (5)0.0166 (4)
C1−0.0827 (4)0.4376 (3)0.49549 (6)0.0154 (5)
H1−0.21990.39670.49710.018*
C20.0388 (4)0.4421 (3)0.52925 (6)0.0173 (5)
H2−0.01470.40080.55340.021*
C30.2405 (3)0.5086 (4)0.52666 (6)0.0154 (4)
C40.3243 (4)0.5704 (3)0.49095 (6)0.0157 (5)
H40.45950.61700.48970.019*
C50.2028 (3)0.5613 (3)0.45730 (7)0.0153 (5)
H50.25780.60050.43320.018*
C6−0.0002 (3)0.4943 (4)0.45901 (6)0.0148 (4)
C7−0.1372 (3)0.4843 (3)0.42347 (6)0.0136 (4)
C8−0.0579 (4)0.4106 (3)0.32251 (6)0.0147 (5)
H80.07950.36990.32390.018*
C9−0.1631 (4)0.4172 (3)0.28408 (6)0.0135 (5)
C10−0.0582 (4)0.3550 (3)0.25039 (7)0.0158 (5)
H100.07570.30620.25270.019*
C11−0.1513 (4)0.3651 (3)0.21331 (6)0.0156 (5)
H11−0.07970.32000.19130.019*
C12−0.3506 (4)0.4420 (3)0.20852 (6)0.0152 (5)
C13−0.4564 (3)0.5034 (4)0.24292 (6)0.0160 (4)
H13−0.58970.55380.24080.019*
C14−0.3643 (3)0.4893 (3)0.27960 (6)0.0151 (4)
H14−0.43760.52860.30190.018*
C15−0.6672 (4)0.4541 (4)0.16837 (7)0.0205 (5)
H15A−0.72660.54090.18740.031*
H15B−0.71320.32510.17380.031*
H15C−0.71050.49070.14230.031*
C16−0.3386 (4)0.3595 (4)0.13815 (7)0.0245 (6)
H16A−0.19930.40650.13520.037*
H16B−0.41440.38110.11410.037*
H16C−0.33540.22390.14380.037*
H1N10.0892 (19)0.419 (3)0.3882 (7)0.028 (7)*
O1W0.3779 (3)0.3316 (2)0.37632 (5)0.0259 (4)
H1W10.40930.25940.35730.039*
H2W10.48300.39230.38370.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0253 (3)0.0248 (3)0.0137 (3)−0.0021 (3)−0.0051 (2)0.0007 (3)
O10.0130 (7)0.0297 (9)0.0192 (8)0.0003 (7)−0.0006 (6)−0.0030 (8)
N10.0122 (9)0.0197 (11)0.0120 (9)0.0011 (8)−0.0031 (7)−0.0003 (8)
N20.0170 (9)0.0155 (10)0.0127 (9)−0.0013 (7)−0.0028 (7)−0.0004 (7)
N30.0203 (10)0.0189 (11)0.0107 (9)0.0014 (8)−0.0012 (7)−0.0007 (8)
C10.0170 (11)0.0118 (11)0.0174 (11)0.0005 (8)0.0039 (9)−0.0007 (8)
C20.0236 (12)0.0168 (12)0.0117 (11)−0.0016 (9)0.0041 (9)−0.0012 (9)
C30.0221 (11)0.0160 (11)0.0081 (10)0.0016 (10)−0.0016 (8)−0.0010 (10)
C40.0149 (11)0.0166 (12)0.0155 (12)−0.0004 (8)0.0005 (9)−0.0013 (9)
C50.0193 (12)0.0157 (12)0.0110 (11)0.0009 (8)0.0017 (9)−0.0003 (9)
C60.0151 (10)0.0148 (11)0.0144 (10)0.0012 (9)−0.0001 (8)−0.0042 (10)
C70.0170 (10)0.0132 (11)0.0108 (10)−0.0012 (9)0.0007 (8)0.0003 (9)
C80.0124 (10)0.0162 (11)0.0155 (12)−0.0015 (9)−0.0007 (9)0.0006 (9)
C90.0157 (11)0.0128 (11)0.0121 (11)−0.0013 (8)−0.0013 (9)0.0004 (8)
C100.0131 (11)0.0179 (12)0.0164 (12)−0.0009 (9)0.0025 (9)−0.0008 (9)
C110.0166 (11)0.0191 (12)0.0111 (11)−0.0002 (9)0.0025 (9)−0.0030 (9)
C120.0192 (11)0.0127 (11)0.0136 (11)−0.0016 (9)−0.0013 (9)0.0021 (8)
C130.0145 (10)0.0169 (11)0.0167 (11)0.0024 (10)0.0000 (8)−0.0003 (10)
C140.0196 (10)0.0142 (11)0.0116 (10)0.0002 (10)0.0022 (8)−0.0025 (9)
C150.0207 (12)0.0222 (14)0.0186 (12)0.0021 (10)−0.0054 (9)0.0008 (10)
C160.0297 (14)0.0304 (15)0.0134 (12)0.0070 (11)−0.0010 (10)−0.0015 (10)
O1W0.0162 (9)0.0304 (10)0.0310 (10)0.0004 (7)−0.0004 (8)−0.0137 (8)

Geometric parameters (Å, °)

Cl1—C31.739 (2)C8—C91.466 (3)
O1—C71.229 (2)C8—H80.93
N1—C71.358 (3)C9—C101.393 (3)
N1—N21.379 (2)C9—C141.397 (3)
N1—H1N10.857 (10)C10—C111.391 (3)
N2—C81.280 (3)C10—H100.93
N3—C121.405 (3)C11—C121.400 (3)
N3—C151.461 (3)C11—H110.93
N3—C161.473 (3)C12—C131.414 (3)
C1—C21.384 (3)C13—C141.378 (3)
C1—C61.399 (3)C13—H130.93
C1—H10.93C14—H140.93
C2—C31.382 (3)C15—H15A0.96
C2—H20.93C15—H15B0.96
C3—C41.390 (3)C15—H15C0.96
C4—C51.382 (3)C16—H16A0.96
C4—H40.93C16—H16B0.96
C5—C61.389 (3)C16—H16C0.96
C5—H50.93O1W—H1W10.84
C6—C71.493 (3)O1W—H2W10.83
C7—N1—N2118.25 (17)C10—C9—C14118.2 (2)
C7—N1—H1N1120.4 (17)C10—C9—C8119.4 (2)
N2—N1—H1N1120.3 (17)C14—C9—C8122.4 (2)
C8—N2—N1116.33 (19)C11—C10—C9120.8 (2)
C12—N3—C15117.51 (19)C11—C10—H10119.6
C12—N3—C16116.49 (19)C9—C10—H10119.6
C15—N3—C16112.54 (19)C10—C11—C12121.3 (2)
C2—C1—C6120.4 (2)C10—C11—H11119.4
C2—C1—H1119.8C12—C11—H11119.4
C6—C1—H1119.8C11—C12—N3121.5 (2)
C3—C2—C1119.1 (2)C11—C12—C13117.5 (2)
C3—C2—H2120.4N3—C12—C13121.0 (2)
C1—C2—H2120.4C14—C13—C12120.8 (2)
C2—C3—C4121.5 (2)C14—C13—H13119.6
C2—C3—Cl1120.08 (17)C12—C13—H13119.6
C4—C3—Cl1118.36 (17)C13—C14—C9121.5 (2)
C5—C4—C3118.8 (2)C13—C14—H14119.3
C5—C4—H4120.6C9—C14—H14119.3
C3—C4—H4120.6N3—C15—H15A109.5
C4—C5—C6120.9 (2)N3—C15—H15B109.5
C4—C5—H5119.5H15A—C15—H15B109.5
C6—C5—H5119.5N3—C15—H15C109.5
C5—C6—C1119.2 (2)H15A—C15—H15C109.5
C5—C6—C7122.61 (19)H15B—C15—H15C109.5
C1—C6—C7118.15 (19)N3—C16—H16A109.5
O1—C7—N1122.92 (19)N3—C16—H16B109.5
O1—C7—C6121.92 (18)H16A—C16—H16B109.5
N1—C7—C6115.16 (18)N3—C16—H16C109.5
N2—C8—C9120.9 (2)H16A—C16—H16C109.5
N2—C8—H8119.6H16B—C16—H16C109.5
C9—C8—H8119.6H1W1—O1W—H2W1109.6
C7—N1—N2—C8−171.4 (2)N1—N2—C8—C9−176.96 (18)
C6—C1—C2—C31.9 (3)N2—C8—C9—C10−177.5 (2)
C1—C2—C3—C4−0.2 (4)N2—C8—C9—C144.5 (3)
C1—C2—C3—Cl1−178.32 (17)C14—C9—C10—C110.2 (3)
C2—C3—C4—C5−1.1 (3)C8—C9—C10—C11−177.9 (2)
Cl1—C3—C4—C5176.95 (17)C9—C10—C11—C121.5 (3)
C3—C4—C5—C60.9 (3)C10—C11—C12—N3176.4 (2)
C4—C5—C6—C10.7 (3)C10—C11—C12—C13−1.9 (3)
C4—C5—C6—C7179.3 (2)C15—N3—C12—C11151.7 (2)
C2—C1—C6—C5−2.2 (3)C16—N3—C12—C1113.7 (3)
C2—C1—C6—C7179.2 (2)C15—N3—C12—C13−30.0 (3)
N2—N1—C7—O14.3 (3)C16—N3—C12—C13−168.0 (2)
N2—N1—C7—C6−175.69 (19)C11—C12—C13—C140.7 (3)
C5—C6—C7—O1−151.1 (2)N3—C12—C13—C14−177.7 (2)
C1—C6—C7—O127.4 (3)C12—C13—C14—C91.0 (4)
C5—C6—C7—N128.8 (3)C10—C9—C14—C13−1.5 (3)
C1—C6—C7—N1−152.6 (2)C8—C9—C14—C13176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N3i0.842.283.045 (2)152
N1—H1N1···O1W0.86 (1)2.00 (1)2.843 (3)169 (2)
O1W—H2W1···O1ii0.842.022.790 (2)152
O1W—H2W1···N2ii0.842.593.240 (3)135
C15—H15C···Cl1iii0.962.783.704 (2)163
C1—H1···Cg1iv0.932.973.621 (2)128
C4—H4···Cg1v0.932.893.565 (2)130
C10—H10···Cg2vi0.932.873.589 (2)135
C13—H13···Cg2vii0.932.813.497 (3)131

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x−1/2, −y+1, z−1/2; (iv) −x−1, y+1/2, −z+3/2; (v) −x, y+3/2, −z+3/2; (vi) x+1/2, −y−1/2, −z; (vii) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2637).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Duraisamy, S., Soosai, D., Subramaniyan, I., Kanakaraj, M. & Muthusamy, K. (2008). Tetrahedron Lett.49, 127–132.
  • Durgun, B. B., Çapan, G., Ergenç, N. & Rollas, S. (1993). Pharmazie, 48, 942–943. [PubMed]
  • Ergenç, N. & Günay, N. S. (1998). Eur. J. Med. Chem.33, 143–148.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res.42, 993–996. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography