PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1592–o1593.
Published online 2008 July 26. doi:  10.1107/S1600536808022782
PMCID: PMC2962207

(E)-3-(4-Chloro­phen­yl)-1-(2-thien­yl)prop-2-en-1-one

Abstract

The title compound, C13H9ClOS, adopts an E configuration with respect to the C=C double bond of the propenone unit. The thienyl and benzene rings are slightly twisted from each other, making a dihedral angle of 6.38 (3)°. An intra­molecular C—H(...)O hydrogen bond generates an S(5) ring motif. A weak inter­molecular C—H(...)O inter­action, a short intra­molecular S(...)O contact [2.932 (2) Å] and two π–π inter­actions between the thienyl and benzene rings are observed. The centroid–centroid distances of the π–π inter­actions are 3.7899 (16) and 3.7891 (16) Å.

Related literature

For related literature on chalcone derivatives, see: Agrinskaya et al. (1999 [triangle]); Gu, Ji, Patil & Dharmaprakash (2008 [triangle]); Gu, Ji, Patil, Dharmaprakash & Wang (2008 [triangle]); Fun et al. (2008 [triangle]); Patil et al. (2006 [triangle]); Patil, Dharmaprakash et al. (2007 [triangle]); Patil, Fun et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1592-scheme1.jpg

Experimental

Crystal data

  • C13H9ClOS
  • M r = 248.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1592-efi1.jpg
  • a = 5.7023 (3) Å
  • b = 13.3576 (8) Å
  • c = 14.7017 (10) Å
  • β = 96.735 (4)°
  • V = 1112.09 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 100.0 (1) K
  • 0.45 × 0.13 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.804, T max = 0.942
  • 12436 measured reflections
  • 3238 independent reflections
  • 2546 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.199
  • S = 1.08
  • 3238 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 1.76 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022782/is2316sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022782/is2316Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

supplementary crystallographic information

Comment

Since some chalcone derivatives have shown to be potential nonlinear optical materials (Agrinskaya et al., 1999), a series of new chalcone derivatives have been prepared in our laboratory (Gu, Ji, Patil & Dharmaprakash, 2008; Gu, Ji, Patil, Dharmaprakash & Wang, 2008; Fun et al., 2008; Patil, Dharmaprakash et al., 2007; Patil, Fun et al., 2007; Patil et al., 2006). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

In the crystal structure of the title compound, (I), the molecule exhibits an E configuration with respect to the C6═C7 double bond with the C5–C6–C7–C8 torsion angle being 180.0 (3)°. The bond lengths and bond angles in (I) are found to have normal values (Allen et al., 1987). The thienyl (S1/C1—C4) and benzene (C8—C13) rings are essentially planar with the maximum deviation from planarity being -0.001 (2) Å for atom S1 and 0.011 (3) Å for atom C8. The thienyl ring and the benzene ring are slightly twisted from each other with a dihedral angle of 6.38 (8)°.

An intramolecular C—H···O hydrogen bond generates a ring motif S(5) (Bernstein et al., 1995). The intramolecular short S···O contact [2.932 (2) Å] stabilizes the molecular conformation. The crystal packing is consolidated by a weak intermolecular C—H···O interaction. Two π–π interactions with the centroid-to-centroid distances of 3.7899 (16) and 3.7891 (16) Å are observed (symmetry codes: 1 - x, 1/2 + y, 1/2 - z; 1 - x, -1/2 + y, 1/2 - z).

Experimental

The compound (I) was synthesized by the condensation of 4-chlorobenzaldehyde (0.01 mol, 1.49 mg) with 2-acetylthiophene (0.01 mol, 1.07 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (10 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. The precipitated compound was recrystallized from N, N-dimethylformamide (DMF).

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The highest peak in the difference Fourier map is located 0.82 Å from atom S1.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis.

Crystal data

C13H9ClOSF000 = 512
Mr = 248.71Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3595 reflections
a = 5.7023 (3) Åθ = 2.8–29.8º
b = 13.3576 (8) ŵ = 0.50 mm1
c = 14.7017 (10) ÅT = 100.0 (1) K
β = 96.735 (4)ºNeedle, colourless
V = 1112.09 (12) Å30.45 × 0.13 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3238 independent reflections
Radiation source: fine-focus sealed tube2546 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 100.0(1) Kθmax = 30.1º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −8→8
Tmin = 0.804, Tmax = 0.942k = −16→18
12436 measured reflectionsl = −20→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.199  w = 1/[σ2(Fo2) + (0.0986P)2 + 1.8996P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3238 reflectionsΔρmax = 1.76 e Å3
145 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.90267 (12)1.35871 (6)0.43901 (5)0.0277 (2)
Cl10.00412 (13)0.64087 (5)0.29914 (5)0.0299 (2)
O10.9797 (4)1.14167 (16)0.44334 (16)0.0327 (5)
C20.4870 (5)1.4144 (2)0.3764 (2)0.0293 (6)
H2A0.35751.45500.35790.035*
C30.4820 (5)1.3077 (2)0.37026 (19)0.0224 (5)
H3A0.35051.27030.34760.027*
C40.7018 (5)1.2675 (2)0.40300 (18)0.0223 (5)
C50.7766 (5)1.1625 (2)0.4128 (2)0.0250 (6)
C60.5981 (5)1.0853 (2)0.3844 (2)0.0268 (6)
H6A0.45391.10420.35290.032*
C70.6405 (5)0.9890 (2)0.40334 (19)0.0240 (5)
H7A0.78680.97320.43490.029*
C80.4777 (5)0.9050 (2)0.37894 (18)0.0222 (5)
C90.2473 (5)0.9190 (2)0.3366 (2)0.0248 (6)
H9A0.19110.98370.32520.030*
C100.1021 (5)0.8388 (2)0.31147 (19)0.0238 (5)
H10A−0.05010.84910.28270.029*
C10.7028 (5)1.4507 (2)0.4124 (2)0.0301 (6)
H1A0.73571.51840.42110.036*
C120.4120 (5)0.7255 (2)0.3732 (2)0.0259 (6)
H12A0.46590.66070.38560.031*
C130.5557 (5)0.8070 (2)0.39794 (19)0.0238 (5)
H13A0.70680.79650.42770.029*
C110.1866 (5)0.7422 (2)0.32979 (19)0.0224 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0200 (3)0.0344 (4)0.0281 (4)−0.0065 (3)0.0004 (3)−0.0013 (3)
Cl10.0258 (4)0.0293 (4)0.0341 (4)−0.0077 (3)0.0020 (3)−0.0027 (3)
O10.0221 (10)0.0339 (12)0.0397 (13)−0.0002 (8)−0.0060 (9)0.0006 (9)
C20.0217 (13)0.0321 (15)0.0342 (16)0.0004 (11)0.0034 (11)−0.0023 (12)
C30.0171 (11)0.0235 (12)0.0262 (13)−0.0011 (9)0.0012 (9)−0.0021 (10)
C40.0174 (11)0.0281 (13)0.0207 (12)−0.0040 (10)0.0001 (9)−0.0028 (10)
C50.0201 (12)0.0304 (14)0.0243 (13)−0.0007 (10)0.0014 (10)−0.0009 (10)
C60.0191 (12)0.0287 (14)0.0312 (15)−0.0021 (10)−0.0029 (10)0.0005 (11)
C70.0172 (11)0.0281 (13)0.0262 (13)−0.0028 (10)0.0007 (9)−0.0002 (10)
C80.0173 (11)0.0266 (13)0.0224 (12)0.0009 (9)0.0016 (9)−0.0015 (10)
C90.0170 (12)0.0288 (14)0.0279 (14)0.0025 (10)−0.0003 (10)0.0004 (11)
C100.0170 (11)0.0307 (13)0.0233 (13)0.0012 (10)0.0004 (9)0.0023 (10)
C10.0288 (14)0.0307 (14)0.0318 (15)−0.0076 (11)0.0072 (11)−0.0024 (12)
C120.0224 (13)0.0252 (13)0.0300 (14)0.0007 (10)0.0031 (10)0.0038 (11)
C130.0171 (11)0.0279 (13)0.0263 (13)0.0024 (10)0.0018 (9)0.0036 (10)
C110.0196 (12)0.0256 (13)0.0227 (13)−0.0048 (10)0.0050 (9)0.0003 (10)

Geometric parameters (Å, °)

S1—C11.691 (3)C7—C81.473 (4)
S1—C41.713 (3)C7—H7A0.9300
Cl1—C111.735 (3)C8—C91.398 (4)
O1—C51.224 (3)C8—C131.400 (4)
C2—C11.369 (4)C9—C101.377 (4)
C2—C31.428 (4)C9—H9A0.9300
C2—H2A0.9300C10—C111.393 (4)
C3—C41.397 (4)C10—H10A0.9300
C3—H3A0.9300C1—H1A0.9300
C4—C51.468 (4)C12—C111.385 (4)
C5—C61.474 (4)C12—C131.386 (4)
C6—C71.333 (4)C12—H12A0.9300
C6—H6A0.9300C13—H13A0.9300
C1—S1—C492.14 (14)C9—C8—C7122.6 (3)
C1—C2—C3112.8 (3)C13—C8—C7119.1 (2)
C1—C2—H2A123.6C10—C9—C8121.3 (3)
C3—C2—H2A123.6C10—C9—H9A119.4
C4—C3—C2110.6 (2)C8—C9—H9A119.4
C4—C3—H3A124.7C9—C10—C11119.0 (2)
C2—C3—H3A124.7C9—C10—H10A120.5
C3—C4—C5129.8 (2)C11—C10—H10A120.5
C3—C4—S1111.9 (2)C2—C1—S1112.5 (2)
C5—C4—S1118.2 (2)C2—C1—H1A123.7
O1—C5—C4120.3 (3)S1—C1—H1A123.7
O1—C5—C6122.5 (3)C11—C12—C13118.9 (3)
C4—C5—C6117.2 (2)C11—C12—H12A120.6
C7—C6—C5120.9 (3)C13—C12—H12A120.6
C7—C6—H6A119.5C12—C13—C8121.2 (2)
C5—C6—H6A119.5C12—C13—H13A119.4
C6—C7—C8126.2 (3)C8—C13—H13A119.4
C6—C7—H7A116.9C12—C11—C10121.3 (2)
C8—C7—H7A116.9C12—C11—Cl1119.3 (2)
C9—C8—C13118.3 (3)C10—C11—Cl1119.3 (2)
C1—C2—C3—C40.0 (4)C6—C7—C8—C13175.3 (3)
C2—C3—C4—C5177.7 (3)C13—C8—C9—C10−2.0 (4)
C2—C3—C4—S1−0.2 (3)C7—C8—C9—C10177.5 (3)
C1—S1—C4—C30.2 (2)C8—C9—C10—C110.8 (4)
C1—S1—C4—C5−177.9 (2)C3—C2—C1—S10.2 (3)
C3—C4—C5—O1−180.0 (3)C4—S1—C1—C2−0.2 (3)
S1—C4—C5—O1−2.3 (4)C11—C12—C13—C8−0.6 (4)
C3—C4—C5—C60.2 (5)C9—C8—C13—C121.9 (4)
S1—C4—C5—C6177.9 (2)C7—C8—C13—C12−177.6 (3)
O1—C5—C6—C710.0 (5)C13—C12—C11—C10−0.6 (4)
C4—C5—C6—C7−170.1 (3)C13—C12—C11—Cl1−179.6 (2)
C5—C6—C7—C8180.0 (3)C9—C10—C11—C120.5 (4)
C6—C7—C8—C9−4.1 (5)C9—C10—C11—Cl1179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O10.932.502.825 (4)101
C13—H13A···O1i0.932.583.389 (4)145

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2316).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1356–o1357. [PMC free article] [PubMed]
  • Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys.103, 103511–103516.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett.92, 091118–091121.
  • Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography