PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1586.
Published online 2008 July 26. doi:  10.1107/S160053680802268X
PMCID: PMC2962203

2,4-Bis(2-chloro­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

The mol­ecular structure of the title compound, C20H19Cl2NO, reveals chair conformations for both six-membered rings of the bicyclic system. Both 2-chloro­phenyl groups adopt equatorial dispositions with the chloro substituents oriented towards the carbonyl group; the aryl groups are orientated at an angle of 28.64 (3)° with respect to each other.

Related literature

For related literature, see: Buxton et al. (1996 [triangle]); Jeyaraman et al. (1981 [triangle]); Zefirov et al. (1990 [triangle]); Vijayalakshmi et al. (2000 [triangle]); Web et al. (1967 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1586-scheme1.jpg

Experimental

Crystal data

  • C20H19Cl2NO
  • M r = 360.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1586-efi1.jpg
  • a = 7.7070 (15) Å
  • b = 10.680 (2) Å
  • c = 11.000 (2) Å
  • α = 101.78 (3)°
  • β = 92.82 (3)°
  • γ = 98.13 (3)°
  • V = 874.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 298 (2) K
  • 0.32 × 0.25 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.889, T max = 0.928
  • 9470 measured reflections
  • 2949 independent reflections
  • 2478 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.087
  • wR(F 2) = 0.309
  • S = 1.19
  • 2949 reflections
  • 221 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker–Nonius, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker–Nonius, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802268X/bx2162sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802268X/bx2162Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the second stage of the BK 21 program and Pukyong National University under the 2008 Postdoc program. The authors acknowledge the Department of Chemistry, IIT, Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

Since the biological activities mainly depend on the stereochemistry (Jeyaraman & Avila, 1981; Buxton & Roberts, 1996) it is worthwhile to study the stereochemistry and conformation of the organic molecules. Generally, these classes of bicyclic system prefer chair-chair conformation (Zefirov & Palyulin, 1990; Vijayalakshmi et al., 2000) among the three possible chair-chair, chair-boat and boat-boat conformations. However, NMR studies of this compound shows ambiguity over the conformation, due to the presence of electron withdrawing chloro substituents on ortho position of the either phenyl rings. Hence, we have carried out this X-ray analysis to establish the three dimensional structure.

The title compound C20H19Cl2NO, exists in chair-chair conformation with equatorial orientations of the ortho phenyl groups on both side of the secondary amino group with the torsion angles C8—C6—C7—C15 and C8—C2—C1—C9 are 178.41 (6) ° and 179.12 (6) ° respectively.

In both aryl groups, the chloro substituents point upwards i.e., towards the carbonyl group and the aryl groups are orientated at an angle of 28.64 (3) ° to each other. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with a deviation of the ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.630 (3) Å and 0.708 (3)Å respectively, QT = 0.593 (8)Å (D.Cremer & Pople, (1975)) whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.530 (4) Å and 0.730 (3) Å respectively (QT = 0.565 (8) Å.). Thus, indicating a deviation from the ideal chair conformation of the cyclohexane part in the title compound (Web & Becker, 1967).

Experimental

A mixture of cyclohexanone (0.05 mol) and ortho chlorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.75 mol) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow color formed during the mixing of the reactants and allowed to stir till the formation of the product. At the end, the pale yellow color azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid become colourless. Recrystallization of the compound from isopropyl alcohol (IPA) gave colourless crystals of 2,4-bis(2-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

1H NMR (400 MHz, CDCl3, p.p.m.): 8.05 (dd, J = 8.0, 1.2 Hz), 7.39 (dt, J = 7.0, 1.6 Hz), 7.27 (dt, J = 7.6, 1.8 Hz), 4.85 (d, H-2a, H-4a, J = 2.4 Hz), 2.88 (m, H-7a), 2.77 (s, H-1, 5), 1.90 (d, H-8 e, J = 4.8 Hz), 1.87 (dd, H-6 e, J = 4.8, 1.6 Hz), 1.81–1.71 (m, H-8a, H-6a), 1.66 (bs, N—H), 1.41 (quintet, H-7 e).

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl,methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP view of the title molecule with atoms represented as 30% probability ellipsoids.

Crystal data

C20H19Cl2NOZ = 2
Mr = 360.26F000 = 376
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.7070 (15) ÅCell parameters from 5271 reflections
b = 10.680 (2) Åθ = 2.4–28.3º
c = 11.000 (2) ŵ = 0.38 mm1
α = 101.78 (3)ºT = 298 (2) K
β = 92.82 (3)ºRectangular, colourless
γ = 98.13 (3)º0.32 × 0.25 × 0.20 mm
V = 874.6 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2949 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 298(2) Kθmax = 25.0º
ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −8→9
Tmin = 0.889, Tmax = 0.928k = −12→12
9470 measured reflectionsl = −12→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.309  w = 1/[σ2(Fo2) + (0.0815P)2 + 8.5055P] where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2949 reflectionsΔρmax = 0.70 e Å3
221 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2417 (9)0.0189 (6)0.1674 (6)0.0272 (15)
H10.31490.02730.09820.033*
C20.3606 (9)0.0002 (7)0.2788 (7)0.0324 (16)
H20.4171−0.07620.25120.039*
C30.2618 (10)−0.0165 (8)0.3956 (7)0.0377 (18)
H3A0.1619−0.08480.37020.045*
H3B0.3398−0.04450.45310.045*
C40.1957 (11)0.1052 (8)0.4652 (7)0.0425 (19)
H4A0.16880.09400.54790.051*
H4B0.08790.11530.42150.051*
C50.3321 (11)0.2301 (8)0.4770 (7)0.0433 (19)
H5A0.27340.30470.50190.052*
H5B0.42220.23250.54250.052*
C60.4220 (9)0.2412 (7)0.3553 (7)0.0339 (17)
H60.51710.31530.37380.041*
C70.2987 (9)0.2553 (6)0.2452 (7)0.0291 (15)
H70.37030.26500.17560.035*
C80.5010 (9)0.1176 (7)0.3144 (7)0.0329 (16)
C90.0965 (9)−0.0967 (6)0.1234 (6)0.0256 (14)
C10−0.0743 (10)−0.0946 (8)0.1630 (7)0.0360 (17)
H10−0.0997−0.01980.21420.043*
C11−0.2061 (10)−0.2016 (8)0.1276 (8)0.0430 (19)
H11−0.3183−0.19710.15390.052*
C12−0.1697 (11)−0.3152 (8)0.0528 (8)0.045 (2)
H12−0.2570−0.38730.03120.054*
C13−0.0067 (11)−0.3211 (7)0.0112 (7)0.0391 (18)
H130.0162−0.3960−0.04130.047*
C140.1257 (9)−0.2140 (7)0.0478 (6)0.0297 (15)
C150.2078 (9)0.3750 (7)0.2778 (7)0.0292 (15)
C160.2911 (10)0.4984 (7)0.2705 (7)0.0335 (16)
C170.2106 (12)0.6063 (8)0.2961 (8)0.047 (2)
H170.26950.68650.28930.057*
C180.0388 (12)0.5946 (8)0.3328 (9)0.049 (2)
H18−0.01720.66700.35120.058*
C19−0.0466 (11)0.4748 (8)0.3413 (8)0.046 (2)
H19−0.16080.46660.36560.055*
C200.0360 (10)0.3662 (7)0.3141 (7)0.0347 (17)
H20−0.02410.28610.32020.042*
Cl10.3337 (3)−0.2278 (2)−0.0080 (2)0.0567 (7)
Cl20.5064 (3)0.5208 (2)0.2224 (2)0.0501 (7)
N10.1657 (8)0.1389 (5)0.2038 (6)0.0290 (13)
O10.6563 (7)0.1143 (6)0.3131 (6)0.0523 (16)
H1A0.096 (12)0.146 (8)0.149 (9)0.05 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.023 (3)0.028 (3)0.030 (4)0.006 (3)0.003 (3)0.001 (3)
C20.027 (4)0.031 (4)0.038 (4)0.008 (3)−0.004 (3)0.005 (3)
C30.036 (4)0.041 (4)0.039 (4)0.005 (3)−0.004 (3)0.017 (3)
C40.045 (5)0.053 (5)0.032 (4)0.010 (4)0.008 (4)0.011 (4)
C50.050 (5)0.043 (5)0.033 (4)0.010 (4)−0.004 (4)0.001 (3)
C60.025 (4)0.029 (4)0.043 (4)−0.002 (3)−0.007 (3)0.002 (3)
C70.025 (4)0.028 (3)0.035 (4)0.004 (3)0.004 (3)0.008 (3)
C80.028 (4)0.036 (4)0.035 (4)0.006 (3)0.000 (3)0.008 (3)
C90.024 (3)0.030 (3)0.023 (3)0.004 (3)0.001 (3)0.006 (3)
C100.029 (4)0.039 (4)0.038 (4)0.010 (3)0.005 (3)0.000 (3)
C110.027 (4)0.056 (5)0.045 (5)0.000 (4)0.005 (3)0.013 (4)
C120.048 (5)0.039 (4)0.042 (5)−0.011 (4)−0.007 (4)0.011 (4)
C130.057 (5)0.027 (4)0.030 (4)0.003 (3)−0.003 (4)0.002 (3)
C140.030 (4)0.034 (4)0.026 (3)0.011 (3)0.002 (3)0.004 (3)
C150.028 (4)0.029 (4)0.031 (4)0.005 (3)0.000 (3)0.006 (3)
C160.032 (4)0.029 (4)0.038 (4)0.002 (3)−0.001 (3)0.005 (3)
C170.056 (5)0.030 (4)0.057 (5)0.008 (4)0.005 (4)0.012 (4)
C180.052 (5)0.040 (5)0.057 (5)0.024 (4)0.007 (4)0.005 (4)
C190.042 (5)0.051 (5)0.047 (5)0.019 (4)0.011 (4)0.008 (4)
C200.032 (4)0.033 (4)0.040 (4)0.008 (3)0.004 (3)0.009 (3)
Cl10.0469 (13)0.0574 (14)0.0617 (14)0.0199 (10)0.0162 (11)−0.0077 (11)
Cl20.0386 (12)0.0390 (11)0.0702 (15)−0.0042 (8)0.0115 (10)0.0113 (10)
N10.025 (3)0.025 (3)0.035 (3)0.005 (2)−0.005 (3)0.004 (3)
O10.023 (3)0.058 (4)0.076 (4)0.010 (3)0.005 (3)0.014 (3)

Geometric parameters (Å, °)

C1—N11.473 (9)C9—C141.408 (10)
C1—C91.524 (9)C9—C101.408 (10)
C1—C21.556 (10)C10—C111.393 (11)
C1—H10.9800C10—H100.9300
C2—C81.507 (10)C11—C121.392 (12)
C2—C31.554 (11)C11—H110.9300
C2—H20.9800C12—C131.364 (12)
C3—C41.534 (11)C12—H120.9300
C3—H3A0.9700C13—C141.398 (10)
C3—H3B0.9700C13—H130.9300
C4—C51.555 (11)C14—Cl11.759 (7)
C4—H4A0.9700C15—C201.398 (10)
C4—H4B0.9700C15—C161.401 (10)
C5—C61.555 (11)C16—C171.372 (11)
C5—H5A0.9700C16—Cl21.766 (8)
C5—H5B0.9700C17—C181.399 (12)
C6—C81.525 (10)C17—H170.9300
C6—C71.547 (10)C18—C191.377 (12)
C6—H60.9800C18—H180.9300
C7—N11.472 (9)C19—C201.387 (11)
C7—C151.531 (10)C19—H190.9300
C7—H70.9800C20—H200.9300
C8—O11.203 (9)N1—H1A0.81 (9)
N1—C1—C9110.5 (5)O1—C8—C2124.3 (7)
N1—C1—C2109.7 (6)O1—C8—C6124.1 (7)
C9—C1—C2111.4 (6)C2—C8—C6111.6 (6)
N1—C1—H1108.4C14—C9—C10115.8 (6)
C9—C1—H1108.4C14—C9—C1122.9 (6)
C2—C1—H1108.4C10—C9—C1121.2 (6)
C8—C2—C3108.7 (6)C11—C10—C9121.7 (7)
C8—C2—C1107.6 (6)C11—C10—H10119.1
C3—C2—C1114.4 (6)C9—C10—H10119.1
C8—C2—H2108.7C12—C11—C10120.0 (7)
C3—C2—H2108.7C12—C11—H11120.0
C1—C2—H2108.7C10—C11—H11120.0
C4—C3—C2115.2 (6)C13—C12—C11120.3 (7)
C4—C3—H3A108.5C13—C12—H12119.9
C2—C3—H3A108.5C11—C12—H12119.9
C4—C3—H3B108.5C12—C13—C14119.5 (7)
C2—C3—H3B108.5C12—C13—H13120.2
H3A—C3—H3B107.5C14—C13—H13120.2
C3—C4—C5112.7 (7)C13—C14—C9122.6 (7)
C3—C4—H4A109.0C13—C14—Cl1117.5 (6)
C5—C4—H4A109.0C9—C14—Cl1119.9 (5)
C3—C4—H4B109.0C20—C15—C16116.6 (7)
C5—C4—H4B109.0C20—C15—C7121.6 (6)
H4A—C4—H4B107.8C16—C15—C7121.8 (6)
C6—C5—C4114.2 (6)C17—C16—C15122.8 (7)
C6—C5—H5A108.7C17—C16—Cl2116.5 (6)
C4—C5—H5A108.7C15—C16—Cl2120.7 (6)
C6—C5—H5B108.7C16—C17—C18119.3 (8)
C4—C5—H5B108.7C16—C17—H17120.4
H5A—C5—H5B107.6C18—C17—H17120.4
C8—C6—C7107.8 (6)C19—C18—C17119.4 (7)
C8—C6—C5107.0 (6)C19—C18—H18120.3
C7—C6—C5115.4 (6)C17—C18—H18120.3
C8—C6—H6108.9C18—C19—C20120.7 (8)
C7—C6—H6108.9C18—C19—H19119.7
C5—C6—H6108.9C20—C19—H19119.7
N1—C7—C15109.7 (5)C19—C20—C15121.2 (7)
N1—C7—C6111.0 (6)C19—C20—H20119.4
C15—C7—C6112.1 (6)C15—C20—H20119.4
N1—C7—H7107.9C7—N1—C1113.5 (5)
C15—C7—H7107.9C7—N1—H1A113 (6)
C6—C7—H7107.9C1—N1—H1A110 (6)
N1—C1—C2—C8−58.3 (7)C9—C10—C11—C121.1 (12)
C9—C1—C2—C8179.2 (6)C10—C11—C12—C13−1.8 (12)
N1—C1—C2—C362.6 (8)C11—C12—C13—C142.4 (12)
C9—C1—C2—C3−60.0 (8)C12—C13—C14—C9−2.4 (11)
C8—C2—C3—C450.7 (8)C12—C13—C14—Cl1179.6 (6)
C1—C2—C3—C4−69.5 (8)C10—C9—C14—C131.7 (10)
C2—C3—C4—C5−41.8 (9)C1—C9—C14—C13177.8 (7)
C3—C4—C5—C644.1 (9)C10—C9—C14—Cl1179.6 (5)
C4—C5—C6—C8−54.4 (8)C1—C9—C14—Cl1−4.2 (9)
C4—C5—C6—C765.4 (9)N1—C7—C15—C2025.3 (9)
C8—C6—C7—N155.2 (8)C6—C7—C15—C20−98.5 (8)
C5—C6—C7—N1−64.2 (8)N1—C7—C15—C16−153.5 (7)
C8—C6—C7—C15178.4 (6)C6—C7—C15—C1682.6 (8)
C5—C6—C7—C1559.0 (8)C20—C15—C16—C17−0.6 (11)
C3—C2—C8—O1115.3 (8)C7—C15—C16—C17178.3 (7)
C1—C2—C8—O1−120.3 (8)C20—C15—C16—Cl2−178.7 (6)
C3—C2—C8—C6−63.3 (8)C7—C15—C16—Cl20.2 (10)
C1—C2—C8—C661.1 (8)C15—C16—C17—C180.8 (13)
C7—C6—C8—O1121.9 (8)Cl2—C16—C17—C18179.0 (7)
C5—C6—C8—O1−113.5 (8)C16—C17—C18—C19−0.6 (13)
C7—C6—C8—C2−59.5 (8)C17—C18—C19—C200.1 (13)
C5—C6—C8—C265.1 (7)C18—C19—C20—C150.2 (13)
N1—C1—C9—C14159.5 (6)C16—C15—C20—C190.0 (11)
C2—C1—C9—C14−78.4 (8)C7—C15—C20—C19−178.8 (7)
N1—C1—C9—C10−24.5 (9)C15—C7—N1—C1178.5 (6)
C2—C1—C9—C1097.6 (8)C6—C7—N1—C1−56.9 (8)
C14—C9—C10—C11−1.0 (11)C9—C1—N1—C7−178.9 (6)
C1—C9—C10—C11−177.3 (7)C2—C1—N1—C758.0 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2162).

References

  • Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker–Nonius (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry London: Longman.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240–1241. [PubMed]
  • Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.
  • Zefirov, N. S. & Palyulin, V. A. (1990). Top. Stereochem.20, 171–230.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography