PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1585.
Published online 2008 July 23. doi:  10.1107/S1600536808022587
PMCID: PMC2962202

4-Benzyl­piperazin-1-ium chloride chloro­form solvate

Abstract

The ions of the title chloro­form-solvated salt, C11H17N2 +·Cl·CHCl3, are linked by a strong N—H(...)Cl hydrogen bond; the solvent mol­ecule also inter­acts with the chloride ion through a C—H(...)Cl hydrogen bond. Additionally, neighboring cations form weak hydrogen bonds to the anion, resulting in a supra­molecular ribbon that runs along the a axis.

Related literature

For related literature, see Albinati et al. (1980 [triangle]); Antolini et al. (1981 [triangle], 1982 [triangle]); Osa et al. (2002 [triangle]); Tanaka et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1585-scheme1.jpg

Experimental

Crystal data

  • C11H17N2 +·Cl·CHCl3
  • M r = 332.08
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1585-efi1.jpg
  • a = 5.6053 (4) Å
  • b = 9.4889 (9) Å
  • c = 15.303 (2) Å
  • α = 100.980 (8)°
  • β = 90.957 (7)°
  • γ = 93.219 (7)°
  • V = 797.51 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 173 (2) K
  • 0.40 × 0.32 × 0.30 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 4013 measured reflections
  • 2967 independent reflections
  • 2811 reflections with I > 2σ(I)
  • R int = 0.015
  • 3 standard reflections every 197 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.07
  • 2967 reflections
  • 175 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: XSCANS (Siemens, 1994 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808022587/ng2473sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022587/ng2473Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support provided by the Ministry of Education and Research of Romania (Excellency Research Program, project CEx-05-D11-16/2005; grant No. CNCSIS TD-80/2007) is greatly appreciated.

supplementary crystallographic information

Comment

Derivatives of piperazine are useful compounds because of their biological activity (Osa et al., 2002). Trimetazidine is a clinically antianginal agent (Tanaka et al., 2005). A compound of the type (NBzpipzH2)2CuCl6 (NBzpipzH2 = N-benzylpiperazinium dication) was reported (Antolini et al., 1982) and the preparation of mercury(III) compounds (NbzpipzH)Hg2X5 (NbzpipzH = N-benzylpiperazinium monocation; X = Cl, Br) is known (Albinati, et al., 1980, Antolini et al., 1981).

The title compound (Fig.1) is formed by C11H17N2+ cation and Cl- anion connected through a strong N—H···Cl- hydrogen bond [H1N···Cl1 = 2.30 (2) Å, N2—H1N···Cl1 = 169 (2)°] and crystallizes with a CHCl3 molecule bonded to the Cl- through a hydrogen bond [H12···Cl1 = 2.60 (3) Å, C12—H12···Cl1 = 151 (2)°]. Intermolecular hydrogen bonds link the Cl- anion to two aditional cations (Table 1) resulting in a double chain-like supramolecular arrangement along the a axis. In crystal there are no interactions between the chains (Fig.2).

Experimental

The compound was obtained as a by-product of the reaction between [2-{HN(CH2CH2)2NCH2}C6H4]Li and BiCl3. Crystals were grown by slow difusion from chloroform / n-hexane (1:5).

1H NMR (CDCl3, 200 MHz, 291 K): δ 2.74 (4H, m, N—CH2—CH2—N), 3.20 (4H, m, N—CH2—CH2—N), 3.55 (2H, s, C6H5—CH2—N), 7.29 (5H, m, C6H5), 8.90 (2H, s, br, NH2). 13C NMR (CDCl3, 50 MHz, 291 K): δ 43.59 (s, N—CH2—CH2—N), 49.47 (s, N—CH2—CH2—N), 62.39 (s, C6H5—CH2—N), 127.53 (s, C-p), 128.45 (s, C-m), 128.95 (s, C-o), 136.89 (s, C-i).

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso= 1.2Ueq (C) for aryl H and Uiso= 1.5Ueq (C) for the rest. The hydrogen H1N, H2N and H12 atoms bonded to N2 and C12, respectively, were found in a difference map and refined with a restrained N—H distance of 0.85 (2) and 0.88 (2) Å, and C—H distance of 0.89 (3) Å, respectively.

Figures

Fig. 1.
: View of the title compound showing the atom-numbering (50% probability thermal ellipsoids).
Fig. 2.
: Crystal packing of the title compound showing the supramolecular arrays (hydrogen bonds as dashes lines).

Crystal data

C11H17N2+·Cl·CHCl3Z = 2
Mr = 332.08F000 = 344
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.6053 (4) ÅCell parameters from 44 reflections
b = 9.4889 (9) Åθ = 8.5–25.1º
c = 15.303 (2) ŵ = 0.73 mm1
α = 100.980 (8)ºT = 173 (2) K
β = 90.957 (7)ºBlock, colorless
γ = 93.219 (7)º0.40 × 0.32 × 0.30 mm
V = 797.51 (15) Å3

Data collection

Siemens P4 diffractometerRint = 0.015
Radiation source: sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 2.7º
T = 173(2) Kh = −6→2
2θ–/ω scansk = −11→11
Absorption correction: nonel = −18→18
4013 measured reflections3 standard reflections
2967 independent reflections every 197 reflections
2811 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128  w = 1/[σ2(Fo2) + (0.0804P)2 + 0.5046P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2967 reflectionsΔρmax = 0.56 e Å3
175 parametersΔρmin = −0.72 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl41.23828 (12)0.13191 (10)0.29039 (5)0.0610 (2)
C120.9555 (4)0.1520 (2)0.24518 (15)0.0300 (5)
Cl10.70662 (8)0.21020 (5)0.44910 (3)0.02735 (17)
Cl20.94353 (13)0.32245 (6)0.21628 (5)0.0472 (2)
Cl30.87877 (13)0.01645 (7)0.15238 (4)0.0450 (2)
N10.3777 (3)0.37270 (18)0.71793 (11)0.0228 (4)
N20.2108 (3)0.25651 (19)0.53939 (12)0.0251 (4)
C20.6514 (4)0.2552 (3)0.89764 (16)0.0353 (5)
H20.78720.23080.86540.042*
C60.2964 (4)0.3838 (3)0.91871 (15)0.0324 (5)
H60.19240.44660.90100.039*
C110.3743 (4)0.2181 (2)0.68279 (14)0.0275 (4)
H11A0.34860.16590.73080.033*
H11B0.52740.19400.65720.033*
C10.5004 (4)0.3496 (2)0.87052 (13)0.0264 (4)
C80.4281 (4)0.4505 (2)0.64568 (14)0.0260 (4)
H8A0.58040.42420.62020.031*
H8B0.43860.55310.66900.031*
C90.2325 (4)0.4145 (2)0.57441 (14)0.0273 (4)
H9A0.08190.44600.59910.033*
H9B0.26890.46470.52620.033*
C50.2475 (4)0.3245 (3)0.99313 (16)0.0380 (5)
H50.11060.34771.02490.046*
C100.1780 (4)0.1739 (2)0.61243 (14)0.0280 (4)
H10A0.18080.07180.58840.034*
H10B0.02390.19170.63890.034*
C40.4008 (5)0.2314 (3)1.02029 (15)0.0389 (6)
H40.36810.19251.07050.047*
C70.5559 (4)0.4164 (2)0.79057 (14)0.0286 (5)
H7A0.56340.52030.80850.034*
H7B0.71170.38880.76910.034*
C30.6033 (5)0.1962 (3)0.97243 (17)0.0415 (6)
H30.70710.13320.99020.050*
H1N0.339 (4)0.232 (3)0.5127 (17)0.035 (7)*
H2N0.089 (4)0.235 (3)0.5012 (16)0.039 (7)*
H120.848 (5)0.145 (3)0.2865 (19)0.039 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl40.0309 (4)0.0937 (6)0.0588 (5)0.0100 (3)−0.0096 (3)0.0144 (4)
C120.0240 (10)0.0381 (12)0.0271 (10)0.0006 (9)0.0046 (9)0.0044 (9)
Cl10.0176 (3)0.0367 (3)0.0265 (3)0.0034 (2)0.00211 (19)0.0023 (2)
Cl20.0565 (4)0.0326 (3)0.0527 (4)0.0009 (3)0.0136 (3)0.0079 (3)
Cl30.0589 (4)0.0362 (3)0.0360 (3)−0.0047 (3)−0.0030 (3)−0.0007 (2)
N10.0214 (8)0.0232 (8)0.0230 (8)−0.0007 (6)0.0010 (7)0.0032 (6)
N20.0167 (8)0.0323 (9)0.0248 (9)0.0026 (7)0.0004 (7)0.0014 (7)
C20.0256 (11)0.0460 (13)0.0335 (12)0.0042 (9)−0.0001 (9)0.0053 (10)
C60.0274 (11)0.0396 (12)0.0286 (11)0.0031 (9)−0.0004 (9)0.0020 (9)
C110.0290 (11)0.0248 (10)0.0283 (10)0.0021 (8)−0.0002 (8)0.0043 (8)
C10.0231 (10)0.0306 (10)0.0226 (10)−0.0044 (8)−0.0037 (8)0.0001 (8)
C80.0254 (10)0.0253 (10)0.0272 (10)−0.0021 (8)0.0027 (8)0.0056 (8)
C90.0264 (10)0.0274 (10)0.0291 (10)0.0035 (8)0.0008 (8)0.0074 (8)
C50.0335 (12)0.0491 (14)0.0282 (11)−0.0033 (10)0.0062 (9)0.0003 (10)
C100.0268 (10)0.0250 (10)0.0312 (11)−0.0029 (8)0.0000 (8)0.0040 (8)
C40.0443 (14)0.0468 (13)0.0246 (10)−0.0096 (11)−0.0027 (10)0.0082 (10)
C70.0230 (10)0.0333 (11)0.0273 (10)−0.0053 (8)−0.0017 (8)0.0023 (9)
C30.0418 (14)0.0471 (14)0.0380 (13)0.0035 (11)−0.0078 (11)0.0146 (11)

Geometric parameters (Å, °)

Cl4—C121.753 (2)C11—H11A0.9700
C12—Cl31.755 (2)C11—H11B0.9700
C12—Cl21.761 (2)C1—C71.510 (3)
C12—H120.89 (3)C8—C91.511 (3)
N1—C111.462 (3)C8—H8A0.9700
N1—C81.464 (2)C8—H8B0.9700
N1—C71.465 (3)C9—H9A0.9700
N2—C91.490 (3)C9—H9B0.9700
N2—C101.491 (3)C5—C41.381 (4)
N2—H1N0.852 (17)C5—H50.9300
N2—H2N0.881 (17)C10—H10A0.9700
C2—C11.381 (3)C10—H10B0.9700
C2—C31.391 (3)C4—C31.383 (4)
C2—H20.9300C4—H40.9300
C6—C51.387 (3)C7—H7A0.9700
C6—C11.391 (3)C7—H7B0.9700
C6—H60.9300C3—H30.9300
C11—C101.511 (3)
Cl4—C12—Cl3111.93 (13)C9—C8—H8A109.6
Cl4—C12—Cl2110.52 (13)N1—C8—H8B109.6
Cl3—C12—Cl2110.17 (12)C9—C8—H8B109.6
Cl4—C12—H12108.1 (19)H8A—C8—H8B108.2
Cl3—C12—H12107.5 (19)N2—C9—C8110.19 (16)
Cl2—C12—H12108.5 (18)N2—C9—H9A109.6
C11—N1—C8109.08 (16)C8—C9—H9A109.6
C11—N1—C7111.36 (16)N2—C9—H9B109.6
C8—N1—C7110.31 (16)C8—C9—H9B109.6
C9—N2—C10111.57 (16)H9A—C9—H9B108.1
C9—N2—H1N108.5 (19)C4—C5—C6120.4 (2)
C10—N2—H1N108.6 (18)C4—C5—H5119.8
C9—N2—H2N109.8 (18)C6—C5—H5119.8
C10—N2—H2N109.3 (18)N2—C10—C11110.24 (17)
H1N—N2—H2N109 (3)N2—C10—H10A109.6
C1—C2—C3120.9 (2)C11—C10—H10A109.6
C1—C2—H2119.5N2—C10—H10B109.6
C3—C2—H2119.5C11—C10—H10B109.6
C5—C6—C1120.3 (2)H10A—C10—H10B108.1
C5—C6—H6119.8C5—C4—C3119.6 (2)
C1—C6—H6119.8C5—C4—H4120.2
N1—C11—C10110.42 (17)C3—C4—H4120.2
N1—C11—H11A109.6N1—C7—C1112.66 (17)
C10—C11—H11A109.6N1—C7—H7A109.1
N1—C11—H11B109.6C1—C7—H7A109.1
C10—C11—H11B109.6N1—C7—H7B109.1
H11A—C11—H11B108.1C1—C7—H7B109.1
C2—C1—C6118.9 (2)H7A—C7—H7B107.8
C2—C1—C7120.9 (2)C4—C3—C2119.8 (2)
C6—C1—C7120.3 (2)C4—C3—H3120.1
N1—C8—C9110.12 (16)C2—C3—H3120.1
N1—C8—H8A109.6
C8—N1—C11—C10−61.9 (2)C1—C6—C5—C40.1 (4)
C7—N1—C11—C10176.10 (16)C9—N2—C10—C11−53.5 (2)
C3—C2—C1—C6−0.8 (3)N1—C11—C10—N257.5 (2)
C3—C2—C1—C7178.5 (2)C6—C5—C4—C3−0.5 (4)
C5—C6—C1—C20.5 (3)C11—N1—C7—C1−63.9 (2)
C5—C6—C1—C7−178.8 (2)C8—N1—C7—C1174.83 (17)
C11—N1—C8—C962.1 (2)C2—C1—C7—N1115.9 (2)
C7—N1—C8—C9−175.25 (17)C6—C1—C7—N1−64.7 (3)
C10—N2—C9—C853.8 (2)C5—C4—C3—C20.2 (4)
N1—C8—C9—N2−58.0 (2)C1—C2—C3—C40.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N···Cl10.85 (2)2.30 (2)3.140 (2)169 (2)
C12—H12···Cl10.89 (3)2.60 (3)3.401 (2)151 (2)
N2—H2N···Cl1i0.88 (2)2.26 (2)3.096 (2)159 (2)
C10—H10A···Cl1ii0.972.743.684 (2)165

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2473).

References

  • Albinati, A., Meille, S. V., Cariati, F., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1980). Inorg. Chim. Acta, 38, 221–226.
  • Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M. & Marcotrigiano, G. (1982). Inorg. Chim. Acta, 58, 193–200.
  • Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Marcotrigiano, G. & Porzio, W. (1981). J. Chem. Soc. Dalton Trans. pp. 1753–1759.
  • Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Osa, Y., Sato, Y., Hatano, A. & Takayanagi, T. (2002). Anal. Sci.18, 1069–1070. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tanaka, R., Haramura, M., Tanaka, A. & Hirayama, N. (2005). X-ray Struct. Anal. Online, 21, x3–x4.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography