PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 August 1; 64(Pt 8): o1584.
Published online 2008 July 23. doi:  10.1107/S1600536808022708
PMCID: PMC2962201

N′-(5-Bromo-2-hydroxy­benzyl­idene)-3,4,5-trihydroxy­benzohydrazide dihydrate

Abstract

The title compound, C14H11BrN2O5·2H2O, crystallizes as hydrogen-bonded sheets. The 2-hydr­oxy group on the benzyl­idene group forms an intra­molecular hydrogen bond to the N atom of the C=N double bond. The amino N atom is a hydrogen-bond donor to a water mol­ecule. The hydr­oxy group on the benzohydrazide group is a hydrogen-bond donor to one acceptor site, whereas each water mol­ecule is a hydrogen-bond donor to two acceptor sites.

Related literature

For the structure of a similar Schiff-base ligand, 5-bromo­salicylaldehyde benzoyl­hydrazone, see: Liu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1584-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN2O5·2H2O
  • M r = 403.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1584-efi1.jpg
  • a = 30.8424 (8) Å
  • b = 3.7999 (1) Å
  • c = 12.8484 (4) Å
  • β = 90.280 (2)°
  • V = 1505.79 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.77 mm−1
  • T = 100 (2) K
  • 0.30 × 0.03 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.658, T max = 0.921
  • 9964 measured reflections
  • 3424 independent reflections
  • 2914 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.155
  • S = 1.22
  • 3424 reflections
  • 241 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.08 e Å−3
  • Δρmin = −1.82 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808022708/bt2751sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808022708/bt2751Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Science Fund (12–02-03–2031, 12–02-03–2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

This study extends the structural study on the Schiff base, 5-bromosalicylaldehyde benzoylhydrazone (Liu et al., 2006) as the title compound (Scheme I, Fig. 1) has several hydroxy groups on one of the aromatic rings. The compound crystallizes with two lattice water molecules. Hydrogen bonding interactions (Table 1) give rise to a layer motif.

Experimental

3,4,5-Trihydroxybenzoylhydrazide (0.65 g, 3.5 mmol) and 5-bromo-2-hydroxybenzaldehyde (0.70 g, 3.5 mmol) were heated for 12 h in ethanol. The solvent was removed and the product recrystallized from ethanol.

Refinement

Carbon and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.95 Å; N–H 0.88 Å) and were included in the refinement in the riding model approximation, with Uiso(H) 1.2 Ueq(C). The hydroxy and water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å.

The final difference Fourier map had a peak of 1.37eÅ-3 at 0.69Å from Br1 and a hole of -1.81eÅ-3 at 1.33Å from C2.

Figures

Fig. 1.
View (Barbour, 2001) of N-(5-bromo-2-hydroxybenzylidene)-3,4,5-trihydroxybenzohydrazide with displacement ellipsoids at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C14H11BrN2O5·2H2OF000 = 816
Mr = 403.19Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2758 reflections
a = 30.8424 (8) Åθ = 3.2–27.4º
b = 3.7999 (1) ŵ = 2.77 mm1
c = 12.8484 (4) ÅT = 100 (2) K
β = 90.280 (2)ºNeedle, colorless
V = 1505.79 (7) Å30.30 × 0.03 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3424 independent reflections
Radiation source: fine-focus sealed tube2914 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 100(2) Kθmax = 27.5º
ω scansθmin = 1.3º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −38→40
Tmin = 0.658, Tmax = 0.921k = −4→4
9964 measured reflectionsl = −15→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155  w = 1/[σ2(Fo2) + (0.0499P)2 + 10.2476P] where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
3424 reflectionsΔρmax = 1.08 e Å3
241 parametersΔρmin = −1.82 e Å3
10 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.467910 (16)0.31017 (16)0.89799 (4)0.01787 (17)
O10.32358 (12)0.6446 (12)0.5944 (3)0.0201 (9)
H1O0.3020 (15)0.745 (18)0.621 (5)0.030*
O20.20078 (11)0.9755 (11)0.6545 (3)0.0182 (8)
O30.05472 (13)1.3768 (13)0.7962 (4)0.0295 (11)
H3O0.0335 (16)1.36 (2)0.836 (5)0.044*
O40.05208 (14)1.1036 (15)0.9894 (4)0.0353 (12)
H4O0.048 (3)0.933 (15)1.030 (6)0.053*
O50.12324 (12)0.7692 (12)1.0737 (3)0.0182 (9)
H5O0.1471 (12)0.682 (18)1.092 (5)0.027*
O1W0.25912 (12)1.3152 (13)0.9988 (3)0.0209 (9)
H1W10.2444 (17)1.382 (18)1.050 (3)0.031*
H1W20.2806 (14)1.199 (17)1.020 (4)0.031*
O2W−0.02887 (15)1.3435 (17)0.8657 (5)0.0506 (16)
H2W1−0.042 (3)1.30 (2)0.810 (4)0.076*
H2W2−0.038 (3)1.534 (14)0.890 (7)0.076*
N10.27850 (13)0.8683 (12)0.7531 (3)0.0139 (9)
N20.24174 (13)0.9859 (13)0.8027 (3)0.0138 (9)
H2N0.24311.05110.86840.017*
C10.35563 (16)0.5778 (15)0.6648 (4)0.0144 (10)
C20.39381 (16)0.4251 (16)0.6295 (4)0.0173 (11)
H20.39700.37300.55760.021*
C30.42746 (17)0.3479 (16)0.6985 (4)0.0193 (12)
H30.45350.24310.67430.023*
C40.42245 (16)0.4256 (16)0.8025 (4)0.0160 (11)
C50.38470 (16)0.5781 (15)0.8398 (4)0.0143 (10)
H50.38200.62940.91180.017*
C60.35065 (15)0.6562 (15)0.7712 (4)0.0126 (10)
C70.31105 (16)0.7988 (15)0.8138 (4)0.0130 (10)
H70.30890.84150.88650.016*
C80.20343 (16)1.0010 (13)0.7503 (4)0.0108 (10)
C90.16507 (16)1.0460 (15)0.8180 (4)0.0130 (10)
C100.12793 (16)1.2046 (16)0.7771 (4)0.0163 (11)
H100.12811.29840.70860.020*
C110.09101 (17)1.2242 (15)0.8368 (4)0.0176 (12)
C120.09010 (17)1.0775 (17)0.9364 (4)0.0204 (12)
C130.12713 (17)0.9146 (15)0.9777 (4)0.0152 (11)
C140.16479 (17)0.9040 (15)0.9188 (4)0.0149 (11)
H140.19030.80060.94680.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0094 (2)0.0195 (3)0.0247 (3)−0.0001 (2)−0.00302 (17)−0.0020 (3)
O10.0160 (18)0.032 (3)0.0125 (17)0.0031 (18)−0.0028 (14)−0.0016 (17)
O20.0127 (17)0.027 (2)0.0148 (18)−0.0039 (16)−0.0015 (14)0.0021 (17)
O30.0142 (19)0.041 (3)0.034 (2)0.0120 (19)−0.0051 (17)−0.005 (2)
O40.016 (2)0.060 (4)0.030 (2)0.009 (2)0.0035 (18)−0.013 (2)
O50.0129 (17)0.031 (2)0.0110 (17)−0.0007 (17)0.0027 (14)−0.0045 (16)
O1W0.0162 (18)0.035 (2)0.0113 (17)0.0027 (18)0.0015 (14)−0.0044 (18)
O2W0.016 (2)0.049 (4)0.087 (5)0.010 (2)0.010 (2)0.013 (3)
N10.0107 (19)0.014 (3)0.017 (2)−0.0016 (17)0.0010 (16)−0.0008 (18)
N20.0096 (19)0.019 (3)0.013 (2)−0.0004 (18)−0.0007 (15)−0.0028 (18)
C10.014 (2)0.016 (3)0.014 (2)−0.002 (2)−0.0013 (19)−0.002 (2)
C20.013 (2)0.025 (3)0.014 (2)−0.001 (2)0.0024 (19)0.000 (2)
C30.013 (2)0.020 (3)0.025 (3)0.001 (2)0.006 (2)−0.003 (2)
C40.012 (2)0.014 (3)0.021 (3)−0.001 (2)−0.003 (2)0.003 (2)
C50.015 (2)0.013 (3)0.015 (2)−0.001 (2)0.0005 (19)−0.002 (2)
C60.010 (2)0.015 (3)0.013 (2)−0.003 (2)0.0008 (18)0.001 (2)
C70.013 (2)0.015 (3)0.012 (2)−0.006 (2)0.0022 (18)−0.003 (2)
C80.013 (2)0.004 (3)0.015 (2)−0.0007 (18)−0.0019 (18)0.0009 (19)
C90.011 (2)0.013 (3)0.015 (2)0.000 (2)−0.0027 (19)−0.003 (2)
C100.013 (2)0.016 (3)0.020 (3)0.001 (2)−0.0034 (19)0.000 (2)
C110.017 (2)0.013 (3)0.022 (3)0.008 (2)−0.007 (2)−0.007 (2)
C120.012 (2)0.027 (3)0.022 (3)0.002 (2)0.001 (2)−0.012 (2)
C130.016 (2)0.017 (3)0.013 (2)0.001 (2)0.0025 (19)−0.008 (2)
C140.013 (2)0.016 (3)0.015 (2)0.001 (2)−0.0022 (19)−0.006 (2)

Geometric parameters (Å, °)

Br1—C41.909 (5)C1—C61.408 (7)
O1—C11.361 (6)C2—C31.393 (8)
O1—H1O0.840 (10)C2—H20.9500
O2—C81.236 (6)C3—C41.378 (8)
O3—C111.362 (6)C3—H30.9500
O3—H3O0.838 (10)C4—C51.388 (7)
O4—C121.362 (7)C5—C61.400 (7)
O4—H4O0.840 (10)C5—H50.9500
O5—C131.357 (7)C6—C71.446 (7)
O5—H5O0.841 (10)C7—H70.9500
O1W—H1W10.839 (10)C8—C91.482 (7)
O1W—H1W20.838 (10)C9—C101.395 (7)
O2W—H2W10.838 (10)C9—C141.403 (7)
O2W—H2W20.839 (10)C10—C111.378 (7)
N1—C71.296 (7)C10—H100.9500
N1—N21.378 (6)C11—C121.396 (8)
N2—C81.359 (6)C12—C131.401 (8)
N2—H2N0.8800C13—C141.390 (7)
C1—C21.391 (7)C14—H140.9500
C1—O1—H1O113 (5)C5—C6—C7118.3 (4)
C11—O3—H3O111 (6)C1—C6—C7122.9 (5)
C12—O4—H4O112 (6)N1—C7—C6120.1 (4)
C13—O5—H5O110 (5)N1—C7—H7120.0
H1W1—O1W—H1W2109.6 (18)C6—C7—H7120.0
H2W1—O2W—H2W2109.5 (18)O2—C8—N2122.9 (4)
C7—N1—N2115.1 (4)O2—C8—C9123.0 (4)
C8—N2—N1120.0 (4)N2—C8—C9114.1 (4)
C8—N2—H2N120.0C10—C9—C14120.3 (5)
N1—N2—H2N120.0C10—C9—C8119.0 (5)
O1—C1—C2118.3 (5)C14—C9—C8120.4 (5)
O1—C1—C6121.6 (5)C11—C10—C9119.5 (5)
C2—C1—C6120.1 (5)C11—C10—H10120.2
C1—C2—C3120.6 (5)C9—C10—H10120.2
C1—C2—H2119.7O3—C11—C10119.3 (5)
C3—C2—H2119.7O3—C11—C12120.1 (5)
C4—C3—C2119.1 (5)C10—C11—C12120.6 (5)
C4—C3—H3120.5O4—C12—C11116.7 (5)
C2—C3—H3120.5O4—C12—C13123.0 (5)
C3—C4—C5121.5 (5)C11—C12—C13120.3 (5)
C3—C4—Br1119.2 (4)O5—C13—C14124.1 (5)
C5—C4—Br1119.3 (4)O5—C13—C12116.7 (5)
C4—C5—C6120.0 (5)C14—C13—C12119.2 (5)
C4—C5—H5120.0C13—C14—C9120.0 (5)
C6—C5—H5120.0C13—C14—H14120.0
C5—C6—C1118.7 (5)C9—C14—H14120.0
C7—N1—N2—C8−167.2 (5)N2—C8—C9—C10154.0 (5)
O1—C1—C2—C3−179.3 (5)O2—C8—C9—C14147.8 (5)
C6—C1—C2—C30.1 (9)N2—C8—C9—C14−31.4 (7)
C1—C2—C3—C4−0.1 (9)C14—C9—C10—C110.6 (9)
C2—C3—C4—C50.1 (9)C8—C9—C10—C11175.2 (5)
C2—C3—C4—Br1178.5 (4)C9—C10—C11—O3−179.5 (5)
C3—C4—C5—C60.0 (9)C9—C10—C11—C12−2.0 (9)
Br1—C4—C5—C6−178.4 (4)O3—C11—C12—O4−1.4 (8)
C4—C5—C6—C1−0.1 (8)C10—C11—C12—O4−178.9 (6)
C4—C5—C6—C7177.0 (5)O3—C11—C12—C13178.9 (5)
O1—C1—C6—C5179.4 (5)C10—C11—C12—C131.4 (9)
C2—C1—C6—C50.1 (8)O4—C12—C13—O52.2 (9)
O1—C1—C6—C72.5 (9)C11—C12—C13—O5−178.1 (5)
C2—C1—C6—C7−176.9 (5)O4—C12—C13—C14−179.1 (6)
N2—N1—C7—C6176.8 (5)C11—C12—C13—C140.6 (9)
C5—C6—C7—N1−178.7 (5)O5—C13—C14—C9176.7 (5)
C1—C6—C7—N1−1.8 (8)C12—C13—C14—C9−1.9 (8)
N1—N2—C8—O2−13.6 (8)C10—C9—C14—C131.3 (8)
N1—N2—C8—C9165.7 (5)C8—C9—C14—C13−173.2 (5)
O2—C8—C9—C10−26.7 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.91 (5)2.616 (6)141 (7)
O3—H3o···O2w0.84 (1)1.96 (4)2.736 (6)153 (7)
O4—H4o···O2wi0.84 (1)1.81 (3)2.623 (8)163 (9)
O5—H5o···O2ii0.84 (1)1.93 (2)2.764 (5)171 (7)
O1w—H1w1···O2iii0.84 (1)1.98 (2)2.812 (5)170 (6)
O1w—H1w2···O1ii0.84 (1)2.09 (2)2.914 (6)167 (6)
O2w—H2w1···O3iv0.84 (1)2.13 (5)2.845 (9)142 (8)
O2w—H2w2···O4v0.84 (1)2.12 (4)2.900 (8)154 (8)

Symmetry codes: (i) −x, −y+2, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, −y+5/2, z+1/2; (iv) −x, y−1/2, −z+3/2; (v) −x, −y+3, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2751).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495–o4496.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography